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Abstract

This paper considers continuous-time state estimation when part of the state estimate or the entire state estimate is norm-
constrained. In the former case continuous-time state estimation is considered by posing a constrained optimization problem.
The optimization problem can be broken up into two separate optimization problems, one which solves for the optimal
observer gain associated with the unconstrained state estimates, while the other solves for the optimal observer gain associated
with the constrained state estimates. The optimal constrained state estimate is found by projecting the time derivative of
an unconstrained estimate onto the tangent space associated with the norm constraint. The special case where the entire
state estimate is norm-constrained is briefly discussed. The utility of the filtering results developed are highlighted through a
spacecraft attitude estimation example. Numerical simulation results are included.
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1 Introduction

The control of a system often relies on an estimate of
the system state. Moreover, the majority of real systems
are nonlinear. For instance, estimates of position, veloc-
ity, attitude, and angular velocity are needed to control
spacecraft, aircraft, and ground vehicles. As a result, the
development of state estimators that can robustly and
reliably provide a state estimate of a nonlinear process
is paramount.

Broadly speaking, stochastic estimation methods can
be divided into two main categories (Jazwinski, 1970;
Simon, 2006; Crassidis & Junkins, 2012): batch meth-
ods and sequential methods. Batch methods, such as
weighted-least-squares methods, sliding-window filters,
and smoothers, use many or all measurements to esti-
mate the state of the system over a range of time. Se-
quential methods, the most popular being the Kalman
filter (Kalman, 1960), provide a state estimate in “one-
step-ahead” fashion. Although batch methods can gen-
erally provide a better state estimate, for real-time and
online applications, one-step-ahead methods are often
preferred. Historically, the Kalman filter and its non-
linear variants (e.g., the extended Kalman filter (EKF)
(Simon, 2006, pp. 400-403), the unscented Kalman fil-
ter (UKF) (Julier et al., 2000)) have proven to be both
computationally efficient and reliable. However, the tra-
ditional Kalman filter structure has no means to directly
handle state constraints.
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Various authors have considered discrete-time Kalman
filtering while simultaneously accounting for linear or
nonlinear state constraints. Inspiration for the present
paper comes from Zanetti et al. (2009) where Kalman
filtering in a discrete-time setting directly considering a
norm constraint on all or part of the state is considered.
The derivation of the discrete-time norm-constrained
Kalman filter is accomplished by augmenting the objec-
tive function, that being the minimization of the error
covariance, with the norm constraint. A particularly in-
teresting result highlighted in Zanetti et al. (2009) is
that normalizing the unconstrained estimate is in fact
optimal.

Numerous other papers considering linear and nonlinear
state constraints appear in the literature. For example,
in Tahk and Speyer (1990); Alouani and Blair (1993);
Richards (1995); Wang et al. (2002); Gupta (2007) lin-
ear equality state constraints are incorporated into the
Kalman filter as pseudo-measurements. Doing so leads to
a measurement noise covariance that is singular, which
from a theoretical point of view is not problematic, but
numerical issues may arise (Simon, 2010). In Simon and
Chia (2002); Gupta (2007) linear equality state con-
straints are enforced by projecting the unconstrained
state estimate generated by the Kalman filter onto the
constraint surface. The work of Simon and Chia (2002)
is extended in Yang and Blasch (2009) where nonlinear
equality constraints are considered. As an alternative
to the approach developed in Simon and Chia (2002),
Ko and Bitmead (2007); Chen (2010); Ko and Bitmead
(2010) use the linear equality state constraints to formu-
late a projected system, and then the Kalman filter is
applied to the projected system to generate a state esti-
mate. Unscented Kalman filtering accounting nonlinear
equality state constraints is considered in Julier and La
Viola (2007). The sigma points generated via the un-
scented transformation are projected onto the constraint
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surface. After the mean is computed (which does not
necessarily satisfy the constraint), the mean is projected
onto the constraint surface. For a survey of discrete-time
Kalman filtering methods that account for linear and
nonlinear state constraints, see Simon (2010).

This paper considers continuous-time Kalman filtering
subject to a norm constraint on the state estimates. The
main contribution of this work is the derivation of the
continuous-time norm-constrained Kalman filter. This
has not been previously considered in the literature. Es-
timating the state when only part of the state estimate
is norm constrained and when the entire state estimate
is norm constrained is investigated. A subtle feature of
the filter presented is that, although a portion or the en-
tire state estimate must satisfy a norm constraint, the
true system state does not necessarily have to be con-
strained in the same way. Additionally, unlike Zanetti
et al. (2009) a weight on the norm is incorporated into
the filter formulation. Although inspiration for this work
comes from Zanetti et al. (2009), the solution presented
is different. Following the traditional continuous-time
Kalman filter derivation, the time derivative of the er-
ror covariance is minimized. However, in order to force
the state estimate to satisfy the norm constraint, the
objective function is augmented not with the norm con-
straint directly, but with its time derivative. The solu-
tion to the optimization problem posed results in the
time derivative of the unconstrained state estimate being
projected onto the tangent space of the constraint sur-
face. This projection is not forced upon the filter struc-
ture, but rather falls out naturally from the derivation.
To showcase the utility of the continuous-time norm-
constrained Kalman filter, the filter is used within an ex-
tended Kalman filter (EKF) framework to estimate the
attitude of a rigid-body spacecraft. Spacecraft attitude
estimation has been extensively considered in the liter-
ature; see Shuster and Oh (1981); Bar-Itzhack and Osh-
man (1985); Shuster (1989); Choukroun et al. (2006), as
well as the survey paper Crassidis et al. (2007).

The remainder of this paper is as follows. Preliminaries
are reviewed in Section 2. Section 3.1 considers state esti-
mation when only part of the state estimate is norm con-
strained. Norm-constrained Kalman filtering when the
entire state estimate is constrained is briefly considered
in Section 3.2. The role of a particular matrix, which is
in fact a projection matrix, is discussed in Section 3.3.
Spacecraft attitude estimation is considered in Section
4. The process and measurement models are presented
in Sections 4.1 and 4.2. The EKF form of the estima-
tor, resulting in the continuous-time norm-constrained
EKF, is presented in Section 4.3. Numerical simulation
results are presented in Section 4.4. The paper is drawn
to a close in Section 5.

2 Preliminaries

Consider the continuous-time system

ẋ(t) = A(t)x(t) + B(t)u(t) + Γw(t)w(t), (1)

y(t) = C(t)x(t) + Γv(t)v(t), (2)

where x ∈ Rn is the system state, u ∈ Rnu is the known
control input, y ∈ Rny is the measurement, w ∈ Rnw is
the process noise/disturbance, and v ∈ Rnv is the mea-
surement noise. The time-varying matrices A(·), B(·),
C(·), Γw(·), and Γv(·) are of appropriate dimension and
piecewise continuous, and Γv(·) has full row rank. The
process and measurement noise are assumed to be zero-
mean and white with autocovariances E

[
w(t)wT(τ)

]
=

Q(t)δ(t − τ) and E
[
v(t)vT(τ)

]
= R(t)δ(t − τ), respec-

tively, where Q(·) ≥ 0 and R(·) > 0 are piecewise con-
tinuous. Additionally, x(·), w(·), and v(·) are assumed to
be independent for all time. To be concise, the tempo-
ral argument of functions and matrices will no longer be
written unless clarity is required.

3 Norm-Constrained Kalman Filtering

3.1 Norm-Constraining Part of the State

Consider (1) and (2) partitioned in the following way:[
ż

q̇

]
=

[
Azz Azq
Aqz Aqq

]
︸ ︷︷ ︸

A

[
z

q

]
︸ ︷︷ ︸

x

+

[
Bz
Bq

]
︸ ︷︷ ︸

B

u +

[
Γw,z

Γw,q

]
︸ ︷︷ ︸

Γw

w, (3)

y =
[

Cz Cq
]

︸ ︷︷ ︸
C

[
z

q

]
+ Γvv, (4)

where z ∈ Rnz , q ∈ Rnq , and n = nz +nq. The matrices
Azz, Azq, Aqz, Aqq, Bz, Bq, Γw,z, Γw,q, Cz, and Cq are
dimensioned appropriately.

Consider the following linear estimator dynamics:[
˙̂z
˙̂q

]
=

[
Azz Azq
Aqz Aqq

][
ẑ

q̂

]
︸ ︷︷ ︸

x̂

+

[
Bz
Bq

]
u +

[
K̄z

K̄q

]
︸ ︷︷ ︸

K̄

r, (5)

where ẑ ∈ Rnz is the estimate of z, q̂ ∈ Rnq is the
estimate of q, r = y − ŷ is the measurement residual,
and ŷ = Cz ẑ + Cqq̂ is the predicted measurement. The
observer gain K̄ ∈ Rn×ny has been partitioned into K̄z ∈
Rnz×ny and K̄q ∈ Rnq×ny . The estimate ẑ ∈ Rnz is
not constrained, however, q̂ ∈ Rnq is constrained in the
following way:

q̂TWq̂ = `, ∀t ∈ R+, (6)
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where W ∈ Rnq×nq , W = WT > 0 is a constant weight-
ing matrix. The constraint (6) can be equivalently writ-

ten as
∥∥√Wq̂

∥∥ =
√
` where

√
W is the square root of

the matrix W. Differentiating (6) gives

2q̂TWT ˙̂q = 0, ∀t ∈ R+. (7)

The initial state estimates are ẑ(0) and q̂(0) where
q̂T(0)Wq̂(0) = `. The objective at hand is to find K̄ in

an optimal way so that 2q̂TWT ˙̂q = 0, ∀t ∈ R+, meaning

that ˙̂q must be perpendicular to Wq̂ for all time.

It is worth mentioning that although q̂ must satisfy (6)
for all time, the true state q is not required to satisfy
qTWq = `. Such a situation may occur when a real sys-
tem only approximately satisfies qTWq = ` due to physi-
cal limitations, inaccuracies, or deliberate simplification
of a more complicated process.

The estimation error is defined as e = x − x̂. Using (3)
and (5), along with the definition of the estimation error,
the error dynamics are ė = (A − K̄C)e + Γww − K̄Γvv.
Defining the estimation-error covariance to be P(t) =
E
[
e(t)eT(t)

]
, and assuming that K̄ is non-random, it is

straightforward to show that (Crassidis & Junkins, 2012,
pp. 170)

Ṗ = (A− K̄C)P + P(A− K̄C)T +ΓwQΓT
w + K̄ΓvRΓT

v K̄T.
(8)

Shortly it will be shown that K̄ depends on x̂, is therefore
random, and hence (8) is strictly speaking not correct.
However, following the formulation presented in Zanetti
et al. (2009), the dependence of K̄ on x̂ will be neglected.

Before finding the optimal observer gains, the error-
covariance will be partitioned as follows:

P =
[

P1 P2

]
=

[
Pzz Pzq
Pqz Pqq

]
, (9)

where

P1 =

[
Pzz
Pzq

]
, P2 =

[
Pzq
Pqq

]
, (10)

and Pzz, Pzq, Pqz, and Pqq are of appropriate dimension.
In a similar fashion, it will be helpful to partition the
matrix A as

A =

[
Az
Aq

]
=

[
Azz Azq
Aqz Aqq

]
, (11)

where

Az =
[

Azz Azq
]
, Aq =

[
Aqz Aqq

]
. (12)

Using (9), (10), (11), and (12), the time derivative of the
error-covariance presented in (8) is partitioned as

Ṗ =

[
Ṗzz Ṗzq
Ṗqz Ṗqq

]
,

where

Ṗzz = (Az − K̄zC)P1 + PT
1 (AT

z − CTK̄T
z )

+ Γw,zQΓT
w,z + K̄zΓvRΓT

v K̄T
z , (13)

Ṗzq = (Az − K̄zC)P2 + PT
1 (AT

q − CTK̄T
q )

+ Γw,zQΓT
w,q + K̄zΓvRΓT

v K̄T
q , (14)

Ṗqz = (Aq − K̄qC)P1 + PT
2 (AT

z − CTK̄T
z )

+ Γw,qQΓT
w,z + K̄qΓvRΓT

v K̄T
z , (15)

Ṗqq = (Aq − K̄qC)P2 + PT
2 (AT

q − CTK̄T
q )

+ Γw,qQΓT
w,q + K̄qΓvRΓT

v K̄T
q . (16)

Drawing inspiration from the derivation of the uncon-
strained continuous-time Kalman filter (which, for com-
pleteness, is presented in Appendix A), to find the op-
timal observer gain consider the following optimization
problem:

min J(K̄) subject to 2q̂TWT ˙̂q = 0, (17)

where J(K̄) = tr
[
Ṗ
]
. Notice that the objective function

can be written as J(K̄) = tr
[
Ṗ
]

= tr
[
Ṗzz
]

+ tr
[
Ṗqq
]
,

and from (13) and (16), it can be seen that Ṗzz depends

only on K̄z while Ṗqq depends only on K̄q. As a result,
the optimal observer gains K̄z and K̄q can be found in-
dependently.

To find K̄z the following optimization must be solved:
min Jz(K̄z) where Jz(K̄z) = tr

[
Ṗzz
]

and, by using (13),
can be written

Jz(K̄z) = tr
[
(Az − K̄zC)P1 + PT

1 (AT
z − CTK̄T

z )

+ Γw,zQΓT
w,z + K̄zΓvRΓT

v K̄T
z

]
.

Taking the derivative of Jz(·) with respect to K̄z and
setting the result to zero gives

∂Jz(K̄z)

∂K̄z
= 2

(
−PT

1 CT + K̄zΓvRΓT
v

)
= 0,

the first-order necessary condition for optimality. Solv-
ing for K̄z leads to

K̄z = (CP1)
T (

ΓvRΓT
v

)−1
. (18)

Therefore, from (5), ˙̂z = Azz ẑ + Azqq̂ + Bzu + K̄zr. If K̄z

in (18) is compared to the unconstrained gain presented
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in (A.3) of Appendix A they are very similar. This is be-
cause the gain K̄z is not enforcing any sort of constraint
on the state estimate ẑ.

In order to find K̄q a solution to the following optimiza-
tion problem must be found:

min Jq(K̄q) subject to 2q̂TWT ˙̂q = 0,

where Jq(K̄q) = tr
[
Ṗqq
]

and K̄q is the observer gain that

accounts for the constraint 2q̂TWT ˙̂q = 0. Using the esti-

mator dynamics given in (5) the constraint 2q̂TWT ˙̂q = 0
can be written

0 = 2q̂TWT
(
Aqz ẑ + Aqqq̂ + Bqu + K̄qr

)
(19)

= 2tr
[
ẑq̂TWTAqz + q̂q̂TWTAqq

+ uq̂TWTBq + Wq̂rTK̄T
q

]
.

Using a Lagrange multiplier, λ, to augment the objec-
tive function Jq(K̄q) = tr

[
Ṗqq
]

with the constraint, the
associated Lagrangian is

Ĵq(K̄q) = tr
[
(Aq − K̄qC)P2 + PT

2 (AT
q − CTK̄T

q )

+ Γw,qQΓT
w,q + K̄qΓvRΓT

v K̄T
q

]
+2λtr

[
ẑq̂TWTAqz + q̂q̂TWTAqq

+ uq̂TWTBq + Wq̂rTK̄T
q

]
,

where the expression for Ṗqq given in (16) has been used.

Taking the derivative of Ĵq(·) with respect to K̄q and
setting the result to zero gives

∂Ĵq(K̄q)

∂K̄q
= 2

(
−PT

2 CT + K̄qΓvRΓT
v + λWq̂rT

)
= 0.

Solving for K̄q results in

K̄q = (CP2)T
(
ΓvRΓT

v

)−1︸ ︷︷ ︸
Kq

− λWq̂rT
(
ΓvRΓT

v

)−1
, (20)

where the definition of the unconstrained gain, Kq =

(CP2)T
(
ΓvRΓT

v

)−1
, has been used (see (A.3) in Ap-

pendix A). Now K̄q will be substituted into the con-
straint equation shown in (19), and λ will be solved for:

0 = q̂TWT (Aqz ẑ + Aqqq̂ + Bqu + Kqr)

−λq̂TWTWq̂rT
(
ΓvRΓT

v

)−1
r,

resulting in

λ =
q̂TWT ˙̂qu
rκ

, (21)

where

˙̂qu = Aqz ẑ + Aqqq̂ + Bqu + Kqr,

κ = q̂TWTWq̂,

r = rT
(
ΓvRΓT

v

)−1 r,

 (22)

and it is assumed that r 6= 0 (which is true with proba-
bility equal to one). Note that q̂u is not itself a variable;
˙̂qu is used to indicate what ˙̂q would be if the constraint
were not enforced. Additionally, notice that there is only
one solution for λ, unlike in the discrete-time case where
the Lagrange multiplier may take on two different values
(Zanetti et al., 2009).

It is worth mentioning that the objective function Jq(·) is
quadratic in K̄q, and hence strictly convex. Additionally,
the constraint is affine in K̄q, and thus the constraint set
is convex also. Therefore, the optimization problem is
convex. As such, the solution to the problem is a unique
global minimum (Boyd & Vandenberghe, 2004, pp. 136-
140).

The gain K̄q can now be written as follows:

K̄q = Kq −
1

r

(
Wq̂q̂TWT

κ

)
˙̂qurT

(
ΓvRΓT

v

)−1
. (23)

Substituting (23) into the expression for ˙̂q given in (5)

and simplifying using the expressions for ˙̂qu and r given

in (22) allows ˙̂q to be written as

˙̂q =

(
1− Wq̂q̂TWT

κ

)
˙̂qu, (24)

where 1 is the identity matrix (with appropriate dimen-
sion). The significance of the matrix (1−Wq̂q̂TWT/κ)
in (24) will be discussed in Section 3.3.

To find an expression for Ṗ, and expressions for Ṗzz,
Ṗzq, Ṗqz, and Ṗqq, the expressions for K̄z and K̄q given
in (18) and (23), respectively, must be substituted into
(13), (14), (15), and (16). Alternatively, a more concise

expression for Ṗ can be found, as discussed next. De-

fine the unconstrained Kalman gain as K =
[
K̄T
z KT

q

]T
.

Note that the unconstrained gain K may be written con-
cisely as (A.3) in the Appendix A. Then, the gain for the
constrained problem may be written as

K̄ = K + ∆K, (25)

where

∆K =

 0

− 1
r

(
Wq̂q̂TWT

κ

)
˙̂qurT

 (ΓvRΓT
v )−1.

4



It follows by substitution of (25) into (8), that the time

derivative of the error covariance Ṗ can be written as the
nominal unconstrained case, together with an additional
term,

Ṗ = Ṗu + ∆KΓvRΓT
v∆K, (26)

where

Ṗu = (A−KC)P+P(A−KC)T+ΓwQΓT
w+KΓvRΓT

vKT,
(27)

and

∆KΓvRΓT
v∆K =

 0 0

0 1
r

(
Wq̂q̂TWT

κ

)
˙̂qu ˙̂q

T

u

(
Wq̂q̂TWT

κ

)  .
(28)

Notice that Pu is not a variable; the notation Ṗu is used
to indicate what Ṗ would reduce to if the constraint were
not enforced.

Note that the gain K̄ is optimal in the sense that it
solves the optimization problem given in (17). However,
it cannot be concluded that K̄ provides an optimal esti-
mate in the minimum variance sense, which is the case
in the standard Kalman filter. This is because the as-
sumed form of the covariance propagation in (8) is not
strictly speaking correct, because of the dependence of
K̄ on x̂ (specifically, K̄q on q̂).

3.2 Norm-Constraining the Entire State

Consider the system (1) and (2) once again, along with
the following linear estimator dynamics:

˙̂x = Ax̂ + Bu + K̄r (29)

where x̂ ∈ Rn is the state estimate, K̄ ∈ Rn×ny is an
observer gain that we seek to determine optimally, and
r is the measurement residual. The estimate of the state
must satisfy

x̂TWx̂ = `, ∀t ∈ R+, (30)

which can alternatively be written

2x̂TWT ˙̂x = 0, ∀t ∈ R+.

Again, although x̂ must satisfy (30), the true state x does
not have to satisfy xTWx = `. To find K̄ consider the
following optimization problem:

min J(K̄) subject to 2x̂TWT ˙̂x = 0,

where J(K̄) = tr
[
Ṗ
]

and Ṗ is given in (8). Following a
similar procedure to the procedure outlined in Section

3.1 where only part of the state was constrained, the
gain K̄ is readily found to be

K̄ = K− 1

r

(
Wx̂x̂TWT

κ

)
˙̂xurT

(
ΓvRΓT

v

)−1
, (31)

where K = PCT
(
ΓvRΓT

v

)−1
is the unconstrained ob-

server gain (which should be compared to (A.3) in Ap-
pendix A), and

˙̂xu = Ax̂ + Bu + Kr,

κ = x̂TWTWx̂,

r = rT
(
ΓvRΓT

v

)−1 r.

 (32)

Again, x̂u is not itself a variable, and ˙̂xu is used to indi-

cate what ˙̂x would be should the constraint not be en-
forced. Substituting (31) into (29) and (8) and simplify-

ing allows the estimator dynamics and Ṗ to be written
as

˙̂x =

(
1− Wx̂x̂TWT

κ

)
˙̂xu

and
Ṗ = Ṗu + ∆KΓvRΓT

v∆KT, (33)

where Ṗu is given in (27),

∆K = −1

r

(
Wx̂x̂TWT

κ

)
˙̂xurT(ΓvRΓT

v )−1, (34)

and hence

∆KΓvRΓT
v∆KT =

1

r

(
Wx̂x̂TWT

κ

)
˙̂xu ˙̂xTu

(
Wx̂x̂TWT

κ

)
.

(35)
The form of (33) parallels the discrete-time case (Zanetti
et al., 2009). The definition of ∆K in (34) allows K̄ in
(31) to be equivalently written as

K̄ = K + ∆K. (36)

Notice that equation (33) can be obtained by directly
substituting (36) into (8) and simplifying, as is expected.

3.3 The Projection Matrix

Recall equation (24); the matrix (1 − Wq̂q̂TWT/κ)
in (24) is a projection matrix. Specifically, (1 −
Wq̂q̂TWT/κ) projects any n dimensional vector onto

span {Wq̂}⊥. This can be seen by first considering the
following:

v⊥ =

(
1− Wq̂q̂TWT

κ

)
v, (37)
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where v ∈ Rn. By direct computation, v⊥ is perpendic-
ular to Wq̂:

q̂TWTv⊥ = q̂TWT

(
1− Wq̂q̂TWT

κ

)
v

= q̂TWTv−
(

q̂TWTWq̂
κ

)
q̂TWTv = 0,

where q̂TWTWq̂ = κ has been used to simplify. Thus,

v⊥ ∈ span {Wq̂}⊥. Moreover, by defining the surface
f(q̂) = q̂TWq̂− ` = 0, the gradient of f(q̂) is ∇f(q̂) =
2q̂TWT. Clearly any v⊥ generated via (37) is perpen-
dicular to ∇f(x̂). As such, any v⊥ generated via (37) is
tangent to the surface f(q̂) = 0, that being the surface
q̂TWx̂ = `. Hence, (1−Wq̂q̂TWT/κ) projects any n di-
mensional vector onto the tangent space of the surface
q̂TWq̂ = `.

In the context of equation (24), the time derivative of the

constrained state estimate, ˙̂q, is computed by projecting

the time derivative of the unconstrained estimate, ˙̂qu,
onto the tangent space of the surface q̂TWq̂ = `, ∀t ∈
R+. Also, substitution of (24) into 2q̂TWT ˙̂q yields

2q̂TW ˙̂q = 2q̂TW
(

1− Wq̂q̂TWT

κ

)
˙̂qu

= 2

(
q̂TWT ˙̂qu −

(
q̂TWTWq̂

κ

)
q̂TWT ˙̂qu

)
= 0,

as expected.

It should be emphasized that the projection of ˙̂qu onto
the tangent space of the surface q̂TWq̂ = ` yielding
˙̂q naturally falls out of the filter derivation; the pro-
jection is not forced upon the filter in an ad hoc way.
These continuous-time results can be compared with
the discrete-time results (Zanetti et al., 2009) where the
norm-constrained state estimate is shown to be the un-
constrained state estimate normalized in order to satisfy
the norm constraint, which is the least-squares optimal
projection of the unconstrained estimate onto the sphere
of radius

√
`. The projection presented herein, and the

normalization presented in (Zanetti et al., 2009), are the
result of derivations.

4 Application to Spacecraft Attitude Estima-
tion

The estimation of a rigid-body spacecraft’s attitude will
now be considered. First the process and measurement
models will be presented, then linearization and appli-
cation of the continuous-time norm-constrained Kalman
filter in an extended manner will be discussed.

4.1 Process Model

The attitude kinematics are parameterized in terms of
the unit-length quaternion, qT = [εT η], which must sat-
isfy qTq = 1. The relationship between ε̇, η̇, ε, η, and the
body’s angular velocity ω (expressed in the spacecraft
body frame) is (Hughes, 2004, pp. 26)

q̇ =

[
ε̇

η̇

]
=

1

2

[
η1 + ε×

−εT

]
ω, (38)

where for any s = [s1 s2 s3]T ∈ R3 s× ∈ R3×3 is
s× = [s1 s2 s3], s1 = [0 s3 − s2]T, s2 = [−s3 0 s1]T,
s3 = [s2 − s1 0]T. The spacecraft attitude dynamics
are described by (Hughes, 2004, pp. 284)

Iω̇ + ω×Iω = u + w, (39)

where u is the control input and w is a disturbance.
Augmenting (38) and (39) gives

ẋ =


ω̇

ε̇

η̇

 =


I−1(−ω×Iω + u + w)

1
2 (η1 + ε×)ω

− 1
2ε

Tω


︸ ︷︷ ︸

f(x,u,w)

=

[
fω(x,u,w)

fq(x,u,w)

]
,

(40)
which is the continuous-time process model.

4.2 Measurement Model

The spacecraft is assumed to be endowed withm sensors
that each provide a vector measurement in a continuous
fashion. Specifically, each measurement can be described
by

sjb = Cbasja + vj , j = 1 . . .m, (41)

where sjb is the jth vector measurement expressed in
the spacecraft body frame, sja is the corresponding unit-
length reference vector expressed in the inertial frame,
Cba is the rotation matrix corresponding to the quater-
nion q, and vj is zero mean white noise with autocovari-
ance E

[
vj(t)vj T(τ)

]
= Rj(t)δ(t − τ) where Rj(·) > 0.

All noise processes, including the process disturbance,
are uncorrelated. Augmenting all vector measurements,
the measurement equation is then

y =


Cbas1

a

...

Cbasma

+


v1

...

vm


︸ ︷︷ ︸

v

=


0 Y(s1

a,q)
...

...

0 Y(sma ,q)

 x + v

︸ ︷︷ ︸
h(x,v)

(42)
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where (Leung & Damaren, 2004)

Y(sja,q)q =
[
η1− ε× −ε

] [ sja
× sja

−sja
T

0

]
︸ ︷︷ ︸

Y(âa,q)

[
ε

η

]
. (43)

In deriving (43) Cba = (η2 − εTε)1 + 2εεT − 2ηε×

and the identity −ε×ε× = εTε1 − εεT have been em-
ployed. Also, note that E

[
v(t)vT(τ)

]
= R(t)δ(t − τ) =

diagj=1...m

{
Rj(t)

}
δ(t− τ).

4.3 Continuous-Time Norm-Constrained Extended
Kalman Filter Formulation

In order to use the norm-constrained Kalman filter for-
mulation presented in this paper, the process and mea-
surement models must be linearized and implemented
in an EKF framework. Following the EKF development
presented in Simon (2006, pp. 400-403), consider a Tay-
lor series expansion in x, w, and v about some reference
trajectory and reference measurement:

˙̄x = f(x̄,u, w̄), ȳ = h(x̄, v̄),

where x̄, w̄, and v̄ are the reference state trajectory, dis-
turbance, and measurement noise, respectively. Specifi-
cally, x = x̄+δx where x̄ is the reference state trajectory
and δx is a perturbation, w = 0 + δw where w̄ = 0 is
the reference disturbance and δw is a perturbation, and
v = 0 + δv where v̄ = 0 is the reference measurement
noise and δv is a perturbation. Substitution of x = x̄+δx
and w = 0+δw into (40) and neglecting products of δω,
δq, and δw yields

ẋ .
= f(x̄,u, 0) +

∂f(x,u,w)

∂x

∣∣∣∣
x̄,u,0︸ ︷︷ ︸

A

δx +
∂f(x,u,w)

∂w

∣∣∣∣
x̄,u,0︸ ︷︷ ︸

Γw

δw

= Ax + (f(x̄,u, 0)− Ax̄) + Γww, (44)

where

A =


I−1(−ω̄×I + (Iω̄)×) 0 0

1
2 (η̄1 + ε̄×) − 1

2 ω̄
× 1

2 ω̄

− 1
2 ε̄

T − 1
2 ω̄

T 0

 ,

Γw =


I−1

0

0

 .
In a similar fashion, substitution of x = x̄ + δx and v =
0 + δv into (42) and neglecting products of δω, δq, and

δv gives

y .
= h(x̄, 0) +

∂h(x, v)

∂x

∣∣∣∣
x̄,0︸ ︷︷ ︸

C

δx +
∂h(x, v)

∂v

∣∣∣∣
x̄,0︸ ︷︷ ︸

Γv

δx

= Cx + (h(x̄, 0)− Cx̄) + Γvv, (45)

where

C =


0 Ȳ(s1

a, q̄)
...

...

0 Ȳ(sma , q̄)

 , Γv = 1,

and

Ȳ(sja, q̄)

= Y(sja, q̄) +
[ (

(sja
×
ε̄+ sjaη̄)× + sja

T
ε̄ 1
)

(sja
×
ε̄+ sjaη̄)

]
.

Using (44) and (45), the continuous-time norm-
constrained EKF can be formulated. Following Simon
(2006, pp. 400), applying (5) to the linearized equations
in (44) and (45), the state estimate becomes

˙̂x = Ax̂ + (f(x̂,u, 0)− Ax̂) + K̄r = f(x̂,u, 0) + K̄r

where r = y − ŷ = y − h(x̂, 0) is the residual. The con-
straint on the state estimate is q̂Tq̂ = 1; therefore, from
(6) , it follows that W = 1 and ` = 1. From equations
(18) and (23) the optimal gain is

K̄ =

[
K̄ω

K̄q

]
=

[
(CP1)

T (
ΓvRΓT

v

)−1

Kq − 1
r q̂q̂T ˙̂qurT

(
ΓvRΓT

v

)−1

]
,

where κ = 1, Kq is given in (20), r is given in (22), and P
is partitioned as in (9). The time-rate-of-change of ω̂ is

˙̂ω = fω(x̂,u, 0) + K̄ωr,

while the time-rate-of-change of q̂ is

˙̂q =
(
1− q̂q̂T

)
˙̂qu,

where the time derivative of the unconstrained quater-

nion estimate, ˙̂qu, is generated via

˙̂qu = fq(x̂,u, 0) + Kqr,

and fω(·, ·, ·) and fq(·, ·, ·) are defined in (40). Finally, the
time derivative of P is

Ṗ =

[
Ṗωω Ṗωq
Ṗqω Ṗqq

]
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where Ṗωω, Ṗωq, Ṗqω, and Ṗqq are given in equations (13),
(14), (15), (16) where the subscript zz, zq, and qz are
replaced with subscripts ωω, ωq, and qω.

4.4 Numerical Simulation Results

Consider a rigid-body spacecraft in a circular orbit.
The orbit inclination and altitude are 97.6◦ and 600
(km), respectively. The true spacecraft inertia matrix
is I = diag {27, 17, 25} (kg · m2). A gravity-gradient
and magnetic disturbance are included in the truth
model, but not in the estimator dynamics. The gravity-
gradient disturbance is wgg = (3µ/r5

b )r×b Irb where
rb is the position of the spacecraft expressed in the
spacecraft body frame, rb = ‖rb‖, and µ is the gravita-
tional constant of the Earth (Hughes, 2004, pp. 238).
The magnetic disturbance is wm = m×b where b is
the magnetic field vector of the Earth expressed in
the spacecraft body frame (Hughes, 2004, pp. 264),
and m = [1 1 1]T (A · m2) is the spacecraft’s mag-
netic dipole. Moreover, because the true inertia of the
spacecraft is never known exactly, the estimator uses
an inertia matrix equal to I′ = Cb′b( 4

5 I)CT
b′b where

Cb′b = C1(7.5◦)C2(−5◦)C3(10◦), and Cα, α = 1, 2, 3
are principal rotation matrices (Hughes, 2004, pp. 15).
The spacecraft is endowed with two vector measure-
ments. The first vector measurement is given by a sun
sensor, while the second is given by a magnetometer.
Both measurements are normalized. Zero mean white
noise corrupts the measurements; the standard devia-
tion of the noise is σs = 0.005 and σm = 0.01 for the
sun sensor and magnetometer, respectively. The filter
uses Q = diag

{
σ2
w, σ

2
w, σ

2
w

}
where σw = 0.5 (N ·m) and

R = diag
{
σ2
s , σ

2
s , σ

2
s , σ

2
m, σ

2
m, σ

2
m

}
. All simulation re-

sults presented use initial angular velocity and attitude
estimates of ω̂(0) = 0 (s−1) and q̂(0) = [0 0 0 1]T,
and an initial error covariance of P(0) = 1

10 1. In a real
mission scenario a simple algorithm such as the TRIAD
algorithm (Shuster & Oh, 1981) would be used to gen-
erate an initial attitude estimate that would be used to
initialize the EKF. Additionally, in a real mission sce-
nario the spacecraft would be detumbled and eventually
three-axis stabilized; here u = 0 for all time and the
spacecraft continues to tumble, representing a harder
estimation problem.

First consider the case where the initial angular veloc-
ity and attitude are ω(0) = [0.02 − 0.02 0.02]T (s−1)
and q(0) = [sin(φ(0)/2)aT(0) cos(φ(0)/2)]T where

a(0) = (1/
√

14)[2 3 − 1]T and φ(0) = 60◦. These ini-
tial conditions are quite severe. The angular velocity er-
ror, eω = ω− ω̂, is plotted versus time in Figure 1. The
angular velocity error is small indicating that ω̂ matches
ω closely. It is worth emphasizing that angular veloc-
ity estimate is not generated using a rate gyro; rather,
it is created using the process model given in (40) that
is based on kinematic and dynamic principles. To assess
the attitude error, the multiplicative error quaternion,

Figure 1. Angular velocity error vs. time.

Figure 2. Multiplicative error quaternion vs. time.

denoted δq = [δε1 δε2 δε3 δη], is computed from q and
q̂ (Crassidis & Junkins, 2012, pp. 452). The vector part
of the multiplicative error quaternion versus time is plot-
ted in Figure 2. As with the angular velocity error, the
attitude error is small indicating the filter is performing
quite well.

Monte Carlo results will now be presented. The mean
and standard deviation of the angular velocity er-
ror and the vector part of the multiplicative error
quaternion are numerically computed from 300 simu-
lations. The initial angular velocity and attitude are
randomly generated via ω(0) ∼ N (0, (0.02)2 1) and
q(0) = [sin(φ(0)/2)aT(0) cos(φ(0)/2)]T where a′(0) ∼
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N (0, 1), a(0) = a′(0)/ ‖a′(0)‖ and φ(0) ∼ N (0, (30◦)2).
Again, these initial conditions are quite severe. Figures
3 and 4 show the 300 runs between 40 (s) and 60 (s).
This smaller time window is plotted because after 40 (s)
transients associated with aggressive initial conditions
have died out, and the steady-state characteristics of
the filter can be observed. Specifically, Figure 3 shows
the angular velocity error versus time along with ±3σ
bounds, and Figure 4 displays the multiplicative error
quaternion versus time with ±3σ bounds. The ±3σ
bounds are numerically computed from the Monte Carlo
runs. The ±3σ bounds almost always (i.e., essentially
99.7% of the time) capture the angular velocity and
attitude error.

Figure 3. Monte Carlo simulations results of angular velocity
error (solid lines) vs. time with ±3σ bounds (dashed lines).

5 Closing Remarks

The primary contribution of this work is the develop-
ment of the continuous-time norm-constrained Kalman
filter. Inspiration comes from the discrete-time norm-
constrained Kalman filter. The motivation for such a fil-
ter stems from the need to estimate the angular veloc-
ity and attitude of a rigid body, such as a spacecraft,
where the quaternion representing the body’s attitude
must satisfy a unit-length constraint. In this paper, two
state estimation scenarios have been considered. The
first scenario is when only part of the state estimate is
norm constrained; the second is when the entire state
estimate must conform to a norm constraint. The solu-
tion to the state estimation problems posed are found by
solving constrained optimization problems. Of interest
is the fact that the time derivative of the unconstrained
state estimate is projected onto the tangent space of the

Figure 4. Monte Carlo simulations results of multiplicative
error quaternion (solid lines) vs. time with ±3σ bounds
(dashed lines).

norm constraint. To highlight the utility of the filter de-
veloped, estimation of the angular velocity and attitude
of a spacecraft is considered. Owing to the nonlinear
nature of the problem, an extended form of the filter
is used yielding the continuous-time norm-constrained
EKF. Numerical results indicate the filter performs well.
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A Unconstrained Continuous-Time Kalman
Filtering

In this appendix the traditional continuous-time state
estimation will be reviewed. Specifically, the continuous-
time Kalman filter will be derived following the proce-
dure outlined in Crassidis and Junkins (2012, pp. 168-
170). Consider the linear estimator dynamics

˙̂x = Ax̂ + Bu + Kr, (A.1)

where x̂ ∈ Rn is the state estimate, K ∈ Rn×ny is an ob-
server gain that we seek to determine optimally, r = y−ŷ
is the measurement residual (also called the innovation),
and ŷ = Cx̂ is the predicted measurement. In order to
find an optimal estimate of the state, the observer gain
must be found optimally. To this end, define the estima-
tion error e = x − x̂. Using (1), (A.1), and the defini-
tion of the estimation error, the error dynamics are ė =
Ae+Γww−Kr = (A−KC)e+Γww−KΓvv.Defining the
estimation-error covariance to be P(t) = E

[
e(t)eT(t)

]
it

can be shown that

Ṗ = (A−KC)P + P(A−KC)T +ΓwQΓT
w + KΓvRΓT

vKT.
(A.2)

To find the optimal observer gain, consider the following
optimization problem: min J(K) where

J(K) = tr
[
Ṗ
]

= tr
[
(A−KC)P + P(A−KC)T

+ ΓwQΓT
w + KΓvRΓT

vKT
]
.

Taking the derivative of J(·) with respect to K and set-
ting the result to zero gives

∂J(K)

∂K
= 2

(
−PCT + KΓvRΓT

v

)
= 0,

the first-order necessary condition for optimality. Isolat-
ing K yields the optimal observer gain,

K = PCT
(
ΓvRΓT

v

)−1
. (A.3)
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