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Abstract

To fill a gap in satellite services for the Canadian Arctic, the Canadian Space Agency

has proposed a Polar Communication and Weather (PCW) mission to be flown in a

highly elliptical Molniya orbit. In an era of increasingly capable space hardware, au-

tonomous satellite navigation has become a standard means by which satellites in low

Earth orbit can increase their independence and functionality. This study examined

the accuracy to which autonomous navigation might be realized in a Molniya orbit.

Using appropriate physical force models and simulated pseudorange signals from

the Global Positioning System (GPS), a navigation algorithm based on the Extended

Kalman Filter was demonstrated to achieve a three-dimensional root-mean-square

accuracy of 58.9 m over a 500 km � 40 000 km Molniya orbit. This accuracy satisfied

the requirements of the PCW mission and demonstrated the utility of GPS signal

reception at high altitudes. Algorithms based on the Unscented Kalman Filter and

the Cubature Kalman Filter were not found to improve this result; this was due to a

high frequency of measurements during periods of highly nonlinear dynamics.

During this study, detailed models were developed for GPS pseudorange errors,

including ephemeris errors, transmitter clock errors, and ionospheric delay. Receiver

clock bias error was shown to be a significant source of navigation solution error; for

reasons of geometry, the navigation algorithm is not able to differentiate between this

error and a radial position error. GPS sidelobe signals were shown to be an effective

means to acquire additional GPS signals over the highly elliptical orbit. Finally, an

exploratory study found ground-based radio beacons to be a useful navigation aid for

this orbital regime.
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Chapter 1

Introduction

1.1 Motivation for this study:

Satellite Service in Canada’s North

The second-largest country in the world, Canada dominates the northern half of North

America. However, much of the Canadian landscape is not arable, limiting significant

settlement to a strip along the country’s southern border [1]. The three northern ter-

ritories, which together comprise a third of Canada’s land mass, contain a mere 0.3%

of the country’s population [2]. These 100,000 Canadians live in isolated settlements

that dot the North from the 60th parallel all the way to the tip of Ellesmere Island –

at 83.5�N, the outpost of Alert, Nunavut is the northernmost permanently inhabited

settlement in the world [3].

A G8 nation with a developed economy, Canada has undertaken to provide all of

its citizens with basic services. Among these services are the means to communicate

with the world around them and timely access to accurate weather information. Geo-

stationary satellites are well-suited to provide these services, particularly in sparsely

populated areas. However, satellites in geostationary orbit (GEO) have poor visibil-

ity of high latitudes due to their equatorial orbit, with signals essentially unavailable

beyond 80� latitude (see Figure 1.1). Thus, communication service for the North

is currently achieved using large, static ground stations and a terrestrial system of

repeaters – Alert, for example, is serviced by a ground station at Eureka, Nunavut [4]

– while weather services are carried out by American satellites flying in Low Earth

Orbit (LEO) with a data latency up to six hours [5] (see Figure 1.2).

1
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Figure 1.1: A sample image from GOES-13, an American weather satellite in geo-
stationary orbit. Note the poor visibility of polar regions from this orbit.

Figure 1.2: Imagery obtained from one pass of NOAA-19, an American weather
satellite in low earth orbit. Note the incomplete ground coverage of this pass.

(Public domain imagery courtesy of Environment Canada and the U.S. National Oceanic and
Atmospheric Administration: http://weather.gc.ca/satellite/index_e.html, 20 Oct 2013.)

http://weather.gc.ca/satellite/index_e.html
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1.2 Polar Communication and Weather

In recent years, the Canadian government has renewed its interest in Canada’s North

as a means for economic development. In his 2013 Speech from the Throne, Governor

General David Johnston affirmed the government’s commitment to: “securing our

Northern sovereignty; promoting prosperity for Northerners; [and] protecting our

Arctic environmental heritage.” [6].

In response to these past and present policy decisions, the Canadian Space Agency

has proposed a new satellite mission. This mission, titled Polar Communication and

Weather (PCW), was first defined in 2007 and calls for a two satellite constella-

tion. These satellites would be placed in a Molniya-type orbit (see Section 1.2.1) to

maximize their ability to provide communication and weather services to Canada’s

North. Once both satellites are in orbit, they would provide continuous communica-

tion coverage to Canada’s Arctic north of 70�N [7] and meteorological data on a 15

minute refresh rate for the entire circumpolar region north of 50�N [8]. The satellites

are also specified to carry space weather instrumentation; these efforts would improve

Canadian responsiveness to heightened geomagnetic activity and its effect on satellite

operation and high-frequency communication in the Arctic [7].

In addition to its support of economic activity and environmental monitoring,

PCW would positively affirm Canadian sovereignty in the North. In an age of ob-

served climate change, navigation of the Northwest Passage (the historically proposed

route from Europe to Asia through the Canadian Arctic) is becoming more feasible as

the Arctic ice cap continues to recede [9]. PCW would permit active monitoring of the

North and demonstrate (through public and private investment) the Canadian com-

mitment to development in the North. In addition, its communication payload would

be suitable for mobile users such as “ships, planes, and unmanned aerial vehicles” [7]

– greatly assisting future Canadian Forces operations in the Canadian Arctic.

1.2.1 The Molniya Orbit

The Molniya orbit (from Russian molni�, “lightning”) was conceived by the USSR

for communication and reconnaissance during the Cold War. It is a highly-inclined,

highly-elliptical orbit with a period of approximately twelve hours. The high incli-

nation gives it access to high latitudes; the high ellipticity allows maximal coverage

of the sub-satellite point at apogee; and the twelve-hour period gives the satellite a
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repeating ground track with two main focus points separated by 180� in longitude.

Thus, a single reconnaissance satellite with its perigee in the southern hemisphere

and a controlled ascending node can cover the Soviet Union and United States every

24 hours, while a small constellation of communication satellites could offer north-

ern Russia near-complete coverage when supported by appropriate ground hardware.

Illustrations of this orbit can be found in Figure 1.3 (orbit in inertial space) and

Figure 1.4 (orbit ground track).

The Molniya orbit is nominally inclined at the critical inclination of i � 63.4�.

It can be demonstrated that over time, the oblateness of the earth will cause the

argument of perigee (see Appendix A.1) to rotate in the orbital plane (cf. de Ruiter

et al. [10], pp. 168–169). However, the rate of this rotation is inclination-dependent.

The critical inclination is the inclination that causes this perturbation to vanish, a

desirable result for an orbit where perigee stability is essential to maintain coverage

in the Northern hemisphere.

The Molniya orbit is just one example of a class of orbits known as Highly Elliptical

Orbits (HEOs). Related high-inclination HEOs include:

• A twenty-four hour orbital period gives the Tundra orbit a repeating ground

track with a single focus point (the sub-satellite point at apogee). At present,

the only user of this orbit is Sirius Satellite Radio, which uses a trio of these

satellites to maximise coverage of their market in North America [11].

• A sixteen hour orbital period gives the Triple Apogee (TAP) orbit a repeat-

ing ground track with three focus points separated by 120� in longitude. It has

been proposed for PCW as a favourable alternative to the Molniya orbit as its

higher perigee altitude lessens radiation exposure [12]. However, that discussion

is beyond the scope of the present study.

In this study, we will focus on the Molniya orbit.

1.3 The Need for Navigation

Having established a need (communication and weather service for Canada’s North)

and a means (a multi-purpose Canadian satellite on Molniya orbit), we now turn to



5

−20000
−10000

0 −2
−1

0
1

x 10
4

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4  

y, km

3D orbit track

x, km

 

z,
 k

m

Figure 1.3: A typical Molniya orbit.

Figure 1.4: A typical Molniya ground track. Image generated using AGI STK 9.2.0.
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one detail of implementation: spacecraft navigation. For our purposes, navigation is

defined as:

“The measurement and computation necessary to determine

the present spacecraft position and velocity.”

– Apollo GNC Progress Report [13]

Knowledge of position and velocity is essential for any operational spacecraft. It is

used to schedule uplink and downlink, a non-trivial conversation when one of the

two parties is moving at multiple kilometres per second. It is used to plan, execute,

and review spacecraft operations, both active (attitude manoeuvres, orbit correction,

momentum dumping) and passive (imaging, in-situ measurements, battery charging).

Last – but certainly not least – it is used to ensure spacecraft safety through advance

warning of conjunction with orbital debris or other satellites.

Beyond this general need for navigation , the two primary roles of PCW – namely,

communications and weather – are fundamentally dependent on knowledge of the

spacecraft position at all times. Though the Molniya orbit permits a slow-moving

sub-satellite point at apogee, precise ground-station pointing will be vital for reliable

communication over some 40 000 km of slant range. This is particularly true for mobile

users (see Section 1.2) with low-power ground stations. Similarly, the meteorological

payloads for PCW will require accurate position knowledge as the spacecraft will

be executing position-based attitude adjustments throughout the orbit to ensure an

accurate meteorological field-of-view. We can therefore say with certainty that a

navigation solution is critical to the future success of a PCW-like mission.

1.3.1 The Next Step: Autonomous Navigation

In recent years, spacecraft engineers have striven to design spacecraft capable of

operation at varying levels of autonomy – that is, on-orbit operation without the

intervention of a ground station. Autonomous navigation solutions offer distinct

benefits for a spacecraft and its operators. These include:

• immediate availability of position and velocity estimates based on present mea-

surements, rather than estimates based on previous ground passes.

• simplifying uplinks by reducing the need for ground stations to update the

spacecraft with navigation information.
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• increased operational flexibility by giving the spacecraft the ability to continue

operations through a ground station outage.

• increased efficiency of the spacecraft by allowing it to prioritize tasks based on

current and future orbital conditions.

• reduced overhead at the ground station, ultimately saving costs for the satellite

operator.

In light of these benefits, autonomous navigation has been attempted and achieved

by a number of spacecraft on low Earth orbit. Many of these spacecraft relied on

signals from the Global Positioning System (GPS), including PoSAT-1 in 1993 (the

first to autonomously generate its own orbital elements using GPS [14]) and CanX-2

in 2008 (the first CubeSat to successfully deliver GPS navigation fixes [15]).

1.3.2 Autonomous Navigation in HEO

Following these successes, the Canadian Space Agency expressed interest in extending

these LEO-proven technologies to PCW on its highly elliptical orbit. However, navi-

gation for HEO satellites has been not yet been achieved autonomously, with mission

architects preferring the traditional method of ground-based ranging and tracking.

Examples include the Sirius Satellite Radio constellation, which uses ground stations

for tracking [16], and the Radiation Belt Storm Probes, which have used S-band

Doppler based navigation since their launch in August 2012 [17]. This reliance on

ranging is not without merit; when incorporated into a filter (see Section 1.5.3), such

techniques can achieve accuracies on the order of 10 m (1σ) [18], more than accurate

enough for typical communication and earth-observation missions.

While no HEO mission has yet performed autonomous navigation, past missions

have demonstrated key capabilities:

• In 1997, a pair of experimental HEO satellites (EQUATOR-S and TEAMSAT)

successfully received GPS signals at altitudes above that of the GPS constella-

tion itself [19]. However, the reception was not autonomous as the process of

signal acquisition was commanded from the ground.

• A classified American satellite launched in the 1990s used GPS signals to obtain

a navigation solution in GEO [20]. The solution was achieved using ground-

based processing in near-real time.
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• The AMSAT-OSCAR 40 spacecraft (launched in 2000) autonomously acquired

GPS signals throughout its 19-hour HEO [19]. Point solutions accurate to 3 km

were achieved using ground-based processing.

• In early 2013, the GIOVE-A navigation mission became the first civilian satellite

to achieve GPS navigation (position, velocity, and time) in a high altitude orbit

[21]. This was achieved using sidelobe signals1 as the satellite is in a circular

orbit 1000 km above the GPS constellation.

Bolstered by this progress, the Canadian Space Agency specified autonomous navi-

gation as a requirement for the PCW mission. This provided an opportunity for the

growth of Canadian expertise in autonomous satellite navigation.

1.3.3 The Magellan Study on HEO Navigation

In 2011, the Canadian Space Agency contracted Magellan Aerospace of Ottawa to

complete a Space Technology Development Program (STDP) from 2011–2014. This

navigation-focused thesis was funded in part through a collaboration between Magel-

lan Aerospace and Carleton University. Throughout this document, reference will be

made to parameters of simulation that were defined to match those used by Magellan

in their study. This parameter-matching allowed for direct comparison of simulation

results as both studies attempted to meet the STDP navigation accuracy requirement

of �150 m (3σ) in the along/across/radial reference frame2. However, reference will

not be made to the results of the Magellan study due to issues of confidentiality.

1.4 Problem Definition: Navigation on HEO

We are now at a point where we can define the motivating question for this study:

To what accuracy can we autonomously navigate a spacecraft in HEO?

For the sake of this study, we will adopt the operating parameters of the previously

discussed Polar Communication and Weather mission (see Section 1.2), including its

specified navigation requirements (see Section 1.3.3). Thus, we will examine a satellite

1For a further discussion of GPS sidelobes, see Section 3.6.3.
2For a discussion of this reference frame, see Note in Section 5.3.1.
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orbiting in a Molniya-type orbit and evaluate its ability to autonomously determine

its position and velocity. For such an evaluation, we will require a truth.

Throughout this study, we will refer to this idea of truth, most notably in the

form of a truth orbit. This truth orbit can be obtained in two ways. First, it can

be generated using actual measurements obtained by a satellite in highly elliptical

orbit. These measurements are post-processed on the ground, producing a truth orbit

accurate to the limit of the measurement errors. Second, a trusted high-fidelity orbit

propagator is employed to generate a precise truth orbit. We can then corrupt this

truth with known errors, allowing great insight into the behaviour of our navigation

solution for different error types. This level of control is entirely appropriate to

the goals of the current study and will be our method of choice as we evaluate the

sensitivity and accuracy of our proposed solution. For more details on the software

used in this process, please see Appendix C.

1.5 Three Keys to Navigation

The answer to the motivating question in Section 1.4 – i.e., the accuracy to which we

can navigate our spacecraft – will intrinsically rely on the following three components:

1. prediction of future spacecraft position and velocity based on our current knowl-

edge of the spacecraft;

2. selection and modelling of measurements available to our spacecraft which con-

tain information about the current spacecraft position and velocity; and

3. fusion of the prediction and the measurement information to achieve an accurate

navigation solution.

These three topics will form the backbone of this study. They are introduced below

and discussed in greater detail in their respective chapters (Chapters 2, 3, 4).

Before we discuss these three topics, we will introduce the concept of a state vector.

The state vector is a mathematical construct which contains within it all information

necessary to specify the current state of a given dynamic system. In this study, we

will present a dynamic model appropriate for an Earth-orbiting spacecraft. In this

dynamic model, we will model our satellite as a particle with its mass centred at the
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spacecraft centre-of-mass. Our state vector, denoted xptq, can therefore be composed

of the satellite’s position and velocity:

xptq � rrptqT vptqT sT � rrxptq ryptq rzptq vxptq vyptq vzptqsT (1.1)

where position rptq and velocity vptq, both functions of time t, are typically broken

down into their Cartesian components.

During this study, we may choose to append additional elements to our state

vector. The states listed above, however, are the minimum required to characterize

the dynamics of a particle and will be included in all aspects of our analysis.

1.5.1 Predicting: refining our expectations

The ability to predict the motions of celestial bodies has been sought for centuries.

Ancient astronomers developed complex models of cycles and epicycles to reconcile

the erratic motion of planets (from Greek πλανητης, “wanderers”) with the Ptole-

maic model of an Earth-centred universe. These models were standard until Kepler

presented his three laws of orbital motion, laws which had theoretical grounding in

Copernicus’ heliocentric solar system model and practical grounding in Brahe’s de-

tailed astronomical observations. These laws were later refined by Newton to produce

a mathematical description of gravity, the force responsible for keeping celestial bodies

on their orbits.

If we consider two particles of mass m1 and m2, the mutual gravitational force

between them has a magnitude given by:

Fgrav � G
m1m2

|r1Ñ2|2
(1.2)

where r1Ñ2 is the position vector between the two particles and G is a constant of

proportionality (Newton’s gravitational constant, 6.67 � 10�11 N�m2�kg�2).

Though knowledge of orbital dynamics has greatly developed since the time of

Newton, the art of orbit prediction – also known as orbit propagation – remains

reliant on this Newtonian ideal. To propagate an orbit, we attempt to solve the

differential equation:

9x � fpx, tq (1.3)

with initial condition xpt0q, where x is our previously defined state vector. The



11

function fpx, tq is dominated by Newtonian gravity, yet includes within it the effects

of a variety of perturbative forces.

We can therefore solve (1.3) to determine the time history of xptq. This can be

equivalently described as orbit propagation (i.e. moving our satellite forward on its

orbit) or a time update (calculating the state xpt1q at some future time t1 ¡ t0).

The latter interpretation will prove essential to our navigation exercise. For further

details, including the nature of the perturbative forces and mathematical treatment

of all forces involved, see Chapter 2.

1.5.2 Measuring: selecting our observations

Our understanding of the natural world is reliant on our ability to make observations

and understand how those observations relate to the system they describe. Whether

we consider sextant-based navigation, infrared range measurements between docking

spacecraft, or any of a host of scenarios, the measurements available are direct func-

tions of the system state. The relationship between states and measurements can be

formalized as:

y � hpx, tq (1.4)

where hpx, tq is some function which calculates measurements y based on the current

state x and time t.

While (1.4) is useful for our understanding of the system under study, we are

typically interested in the inverse problem. Namely, what does a measurement yptiq
at time ti tell us about the state xptiq?

The present study is therefore faced with a pair of tasks: determining which mea-

surements will be available to our autonomous navigation solution, and determining

what information they hold about the state of our satellite at the time of the mea-

surement. These tasks – and the development of appropriate mathematical models –

are expanded upon in Chapter 3.

1.5.3 Filtering: fusing for navigation

It has become apparent that we will have two separate means by which to estimate our

spacecraft state: propagating and measuring. Both processes are subject to their own

errors and inaccuracies. The question then arises: how do we reconcile an erroneous

prediction of our spacecraft state with an erroneous measurement of spacecraft state?
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Furthermore, is there any means by which we can incorporate previous predictions

and measurements?

The answer to both questions lies in the art of filtering. Filtering is the fusion of

predictions and measurements – of time updates and measurement updates – in the

quest for an accurate navigation solution. When properly formulated, filters allow

the estimation of state based on initial conditions, a dynamic model, a measurement

model, and measurements - all of which have associated errors.

The classical sequential filtering algorithm for dynamic systems is the Kalman

filter, first presented by Rudolf Kalman in his seminal 1960 article [22]. A detailed

discussion of his algorithm and its derivatives is left to Chapter 4 – at present, we

will state only that the intrinsic non-linearity of satellite navigation gives a great deal

of opportunity for innovative methods of filtering.

1.6 Organization of this thesis

This thesis has five chapters beyond the current Introduction. In Chapter 2, we

define the physical models used in this study, detailing each of the physical forces

which act on a spacecraft in highly elliptical orbit. In Chapter 3, we define the

measurement models used in this study, including a thorough discussion of GPS

signals and their use for navigation in HEO. In Chapter 4, we summarize the Kalman

filter and discuss various ways by which it may be applied to nonlinear systems. In

Chapter 5, we incorporate techniques from the three previous chapters to realize a

HEO-appropriate navigation algorithm; the performance of this algorithm is then

examined through simulation. Finally, in Chapter 6 we draw conclusions on the

performance of our algorithm and provide recommendations for future autonomous

navigation in highly elliptical orbit.



Chapter 2

Propagation by Physical Models

2.1 Introduction

2.1.1 Dead Reckoning: The Art of Propagation

Fundamentally, the art of propagation is a process of predicting the future based on

knowledge of the past. In our current study, we are concerned with the prediction

of spacecraft position and velocity over time. Historically, this prediction has been

achieved using an orbit propagator, an algorithm designed to predict the positions of

celestial bodies.

The propagator operates on the principle of “dead reckoning”: prediction of the

future using information collected at present. This process traces its roots back to

the age of sail, where sailors would measure the rate at which a rope would pay out

when a log tied to one end of the rope was thrown overboard (see Fig. 2.1). The chip

log reading, a measurement of ship speed, was combined with knowledge of the local

environment (e.g., prevailing winds) to produce an estimate of forward travel until

the next reading.

In this ship-borne example, velocity is estimated to determine a change in po-

sition by simple integration. Orbit propagators go one step further, modelling the

acceleration acting on a spacecraft to determine changes in velocity, then using this

knowledge to determine changes in position. From kinematics, we recall the following

relationships:

vptq � v0 �
» t

t0

apτqdτ (2.1a)

13
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Figure 2.1: A “chip log”, used for shipborne speed estimation.
c©Rémi Kaupp [23]

rptq � r0 �
» t

t0

vpτqdτ (2.1b)

To solve this initial value problem for the time histories of velocity vptq and position

rptq, we need two things:

1. the initial conditions r0 � rpt0q and v0 � vpt0q;
2. the acceleration aptq acting on our spacecraft for all times t.

In the case of a spacecraft, the initial conditions are determined using measure-

ments. These measurements can be ground-based (e.g. optical observations) or space-

based (e.g. reception and processing of signals from the Global Positioning System).

This process, known as initial orbit determination, has a significant impact on the

accuracy of predictions vptq and rptq. However, initial orbit determination is beyond

the scope of the present study.

Instead, this chapter will focus on the latter requirement, the development of

acceleration models aptq specific to the spacecraft environment. As we develop these

models, it will become apparent that for spacecraft, the time-dependent accelerations

will also depend on spacecraft state xptq � rrptq vptqsT . The task at hand is therefore

the determination of apt,xq, the dependence of spacecraft acceleration on its current

position, its current velocity, and the time-dependent orbital environment.
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Note on form of the propagator: The solution of (2.1) implies the use of

some method of integration. We recall from mathematics that integrals can be eval-

uated both analytically and numerically. Orbit propagators can thus be divided into

two broad categories: analytical and numerical. As discussed by Montenbruck [24],

standard analytical propagators such as the SGP4 model are limited to kilometre-

level accuracy due to the neglect of short period effects. Since our current study is

concerned with short periods (i.e., less than one orbit), numerical integration of the

equations of motion is in order. For details on the form of the numerical integrator

used in this study, please consult Appendix C.2.

2.1.2 Accelerations at play on the HEO orbit

As discussed above, our ability to predict the future state of our spacecraft is de-

pendent on our knowledge of the acceleration apt,xq acting on the spacecraft. In the

idealized analysis, the motion of Earth-orbiting satellites is modelled by the two-body

problem. To solve this problem, we make two assumptions:

1. both the Earth and the satellite are point masses1;

2. the central gravitational force of one body is the only force acting on the other

body, and vice versa.

Having made these assumptions, we can can use (1.2) (see Section 1.5.1) to derive

the celebrated two-body equation (cf. Vallado [26], pp. 20–23). Further, since the

mass of one body (the Earth) dwarfs the mass of the other body (the satellite), we

can simplify the two-body acceleration to:

a2body � �µC r

r3
(2.2)

where r is the position vector from the mass centre of the Earth to the mass centre

of the orbiting body, and µC is the standard gravitational parameter of the Earth.

Fortunately for humanity, our Earth is not a featureless and unchanging point

mass. We have sunlight by day, moonlight by night, an atmosphere to breathe, and

plenty of terrain to explore. These departures from simplicity have an unavoidable

impact on the motions of Earth-orbiting satellites. More specifically, the motions of

satellites are affected by:

1By the shell theorem, this is equivalent to assuming a spherically symmetric mass distribution
for the Earth (Newton [25], Book I, Section XII, Theorem XXXI).
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• non-uniformity of the Earth’s gravitational field;

• the gravitational pull of the Sun, Moon, and planets;

• drag forces during travel through the Earth’s atmosphere;

• momentum transferred by sunlight incident on the spacecraft;

among others. Each of these effects can be modelled as an acceleration or force (see

Note below) which “perturbs” the solution predicted by the two-body acceleration.

The perturbations are added to the two-body acceleration in (2.2), with the resulting

acceleration then used in (2.1) to perform the orbit propagation.

In the remainder of this chapter, we will discuss and present models for each per-

turbing acceleration. We will then implement the model in a MATLAB environment

and verify this implementation against a known truth.

Note on “Forces” and “Accelerations”: We recall that Newton’s Second Law

of Motion for a single body can be stated as Σ F � dp{dt, where F are external forces

acting on the body and p is the momentum of the body. This simplifies to the more

familiar Σ F � ma for the case of unchanging mass m, where a is the acceleration

experienced by the body. Since we are considering forces acting on a simple satellite

model (including an unchanging mass), discussions of “perturbing accelerations” and

“perturbing forces” are equivalent.

2.2 Perturbing Accelerations and Their Models

In this section, we will discuss the four major accelerations (the primary perturba-

tions) that act on Earth-orbiting satellites and present a mathematical model for each

perturbation. We will also introduce a number of smaller perturbations (secondary

perturbations) that have a measurable impact on a satellite in HEO.

2.2.1 Earth Gravity

Attempts to characterize the gravitational field of the Earth have been underway

since the Scientific Revolution. As early as 1672, pendulum-based measurements

of gravitational acceleration in France and French Guiana demonstrated that Earth’s

gravitational field is non-uniform [27]. Measurements continued for hundreds of years,

generating a wealth of location-specific gravity data.
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These measurements were then used in the development of geopotential models,

theory-based attempts to represent the gravitational field of the Earth as a whole.

These models hinge on the nature of gravity as a conservative force. We recall from

physics that such forces can be fully described by a scalar potential function. The

force vector at a given point is then calculated by applying the gradient operator to

the scalar potential at that point.

Spherical harmonic expansion of Earth gravitational potential

One such model, the spherical harmonic expansion, was first examined in 1937 by

Dubovskii [28]. Spherical harmonics are a series of orthogonal functions defined for

spherical coordinates. Just as Fourier theory allows us to construct any periodic func-

tion using a weighted summation of sines and cosines, we can construct any square-

integrable spherical function using a weighted summation of spherical harmonics (cf.

Groemer [29], p. 63).

Using the associated Legendre polynomials, a series of spherical harmonic func-

tions detailed in the literature (e.g. Abramowitz and Stegun [30], pp. 331–341), we

can construct a potential function Upr, φgc, λq representing the Earth’s gravitational

potential. At present, the standard representation of U (see Vallado [26], p. 543) takes

the form:

Upr, φgc, λq � µC
r

8̧

n�0

ļ

m�0

�
RC
r


n
�Pnmrsinpφgcqs�tCnm cospmλq�Snm sinpmλqu (2.3)

where we define:

Upr, φgc, λq gravitational potential function, km2�s�2

r radial coordinate, km

φgc geocentric latitude coordinate, rad

λ longitude coordinate, rad

µC gravitational parameter of Earth, typical value 398 600 km3�s�2

n summation index for model degree

m summation index for model order
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RC mean equatorial Earth radius, typical value 6378 km

Pnm associated Legendre polynomials of order l and degree m

Cnm gravity model coefficients, cosine terms2

Snm gravity model coefficients, sine terms

To calculate the acceleration predicted by this potential function, we must take the

gradient3:

ageoid � ∇U (2.4)

A gravitational model is a set of parameters rµC RC Cnm Snms that defines U . In

this study, we will use the ellipsoid rµC RCs (see Table 2.7) defined by the World

Geodetic System 1984 (WGS-84). This ellipsoid is the reference used by the Global

Positioning System (GPS), a system on which the navigation solution in this study will

rely. We will use the geoid coefficients rCnm Snms defined by the Earth Gravitational

Model 1996 (EGM-96), which improve upon the geoid coefficients released with WGS-

84 and are compatible with the older ellipsoid [31].

Once a gravitational model is selected, we define its fidelity by setting the summa-

tion indicies n and m in (2.3). The maximum value for n is the degree of the model,

while the maximum value for m is the order of the model. This degree and order are

often written in the shorthand nmax�mmax, e.g., a 10�10 EGM-96 model.

A recursive algorithm for Earth gravitational acceleration

While concise on paper, the harmonic series expansion stated in (2.3) is computation-

ally intensive. Furthermore, the series itself only defines the gravitational potential;

as stated in (2.4), the gradient of the potential must also be calculated, itself an

involved process.

2The C20 term, which characterizes the Earth’s oblateness, is the dominant term of the geoidal
perturbation. Its negative is commonly known as the J2 coefficient.

3Note that, by geophysical convention, the gravitational potential function is the negative of
the gravitational potential energy. For this reason, we calculate the acceleration using the positive
gradient, rather than the negative gradient as is common in physics. For further discussion, see
Vallado [26], p. 520.
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Fortunately, there exist recurrence relations for the associated Legendre poly-

nomials Pnm. We can exploit these to define an efficient calculation routine for our

desired acceleration as a function of the current position. For details on the algorithm

employed for this study, see Appendix B.

2.2.2 Third-Body Gravity

The phrase third-body gravity refers to the gravitational effect of a “third body” in

the two-body system modelled by (2.2). For Earth-orbiting satellites, this third body

is typically the Sun, the Moon, or one of the other planets in our Solar System.

Once again, we model each body as a point mass and neglect all forces save

gravity. Using Newtonian mechanics, the third-body effect can be derived (cf. Berry

and Coppola [32]) and expressed as:

a3 � µ3

�
rsatÑ3

r3
satÑ3

� rCÑ3

r3
CÑ3



(2.5)

where we define:

a3 third body acceleration on spacecraft, km�s�2

µ3 gravitational constant of third body, km3�s�2

rsatÑ3 relative position vector from satellite to third body, km

rCÑ3 relative position vector from Earth to third body, km

Using this equation, we can examine the perturbing accelerations caused by each

body in our solar system. The results of such an examination are shown in Table 2.2,

which employs data from Vallado [26] (pp. 990–991).

It is apparent from Table 2.2 that the accelerations of the Moon and Sun dwarf

those of the other planets. This is typical for Earth-orbiting satellites. It is therefore

customary to only consider the third-body effects of the Moon and Sun. In this

case, these effects are termed luni-solar perturbations. In our study, we include the

luni-solar perturbations and will use the Jet Propulsion Laboratory Developmental

Ephemeris (JPL DE-421 – see Appendix A.2) to obtain rCÑ@ptq, rCÑKptq, µ@ and

µK. (The latter can be found in Table 2.7.)
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Table 2.2: Gravitational Influence of Celestial Bodies at Earth

closest approach gravitational worst-case
to Earth (AU) parameter, km3�s�2 acceleration, km�s�2

Sun 1.00 133 000 000 000 3.65�10�09

Mercury 0.61 22 000 2.63�10�15

Venus 0.28 325 000 4.21�10�13

Moon 0.002 57 4 900 9.63�10�09

Mars 0.52 42 800 8.19�10�15

Jupiter 4.20 127 000 000 4.69�10�14

Saturn 8.54 37 900 000 1.68�10�15

Uranus 18.19 5 790 000 2.64�10�17

Neptune 29.07 6 840 000 7.65�10�18

Note: For the purposes of this table, we have defined “closest approach to Earth” as the
difference between the semimajor axes of the Earth and the planet in question. The exceptions
are the Sun (the semimajor axis of Earth is used) and the Moon (the lunar perigee is used).
We then assume perfect alignment, which causes (2.5) to become scalar and allows us to set
rsatÑ3 � rCÑ3 � rCÑsat, where rCÑsat is calculated at our HEO apogee (46 000 km).
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2.2.3 Atmospheric Drag

One of the four fundamental forces of flight, drag resists the movement of an object

through an enveloping fluid. Counter to our commonly-held notion of “the vacuum

of outer space”, the Earth’s atmosphere is measurably present at altitudes typical

for spacecraft near the Earth. As a first estimate, we can adapt the classical drag

formula (cf. Vogel [33], p. 89):

adrag � �1

2

CDAD
m

ρ |vrel|2 êvrel (2.6)

where we define:

adrag drag acceleration on spacecraft, km�s�2

CD drag coefficient, typical value 2.2 (Vallado [26], p. 549)

AD surface area of satellite perpendicular to êvrel , km2

m mass of satellite, kg

ρ local atmospheric density, kg�km�3

vrel velocity of satellite relative to atmosphere, km�s�1

êvrel vrel{|vrel|, unitless

Unlike the equation for Earth gravity, the drag equation appears straightforward

to implement. However, this simplicity is deceptive. As outlined by Vallado [26]

(pp. 549–553), the difficulty with satellite drag is determining the value of each pa-

rameter:

• Atmospheric density ρ decreases with altitude at a roughly exponential rate

(cf. Wertz and Larson [34], p. 211). It can also vary by an order of magnitude

depending on solar activity (ibid., p. 984).

• Spacecraft mass m and surface area AD can vary widely based on mission phase.

The latter is also attitude dependent.

• Relative velocity vrel is, by definition, reliant on the velocity of the atmosphere

– which in turn necessitates the need for a wind model. Current models are

computationally intensive and only provide a rough estimate.
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• Finally, the drag coefficient CD is itself empirically determined and varies with

satellite attitude and surface composition.

In response, we examined each of the issues discussed above.

Drag Simplified: atmospheric density ρ. Our current study is focused on an

orbital regime (HEO) in which our spacecraft spends much of its time at high altitude.

Since ρ falls off with altitude at a roughly exponential rate, drag makes a significant

impact only at orbit perigee. For this reason, we have adopted a uniform layer model

for the atmospheric density:

ρphq �
$&
%ρ500, if h ¤ hcutoff

0, otherwise
(2.7)

where altitude is defined as h � r � RC
4, the density of this uniform layer is chosen

to be the density at the nominal perigee altitude of 500 km (ρ500), and the thickness

of the uniform layer (hcutoff) is reserved as a tuning parameter. A more complex

exponential model for atmospheric density was also examined but was not found to

provide increased propagator accuracy for this particular orbit.

In addition to its computational simplicity, this density model carries an additional

benefit: it is not dependent on solar activity, removing the need for knowledge of the

time-dependent solar radio flux and geomagnetic activity. As noted by Montenbruck

et al. [35], this real-time data is rarely available to an onboard navigation scheme.

Drag Simplified: relative velocity. For the calculation of vrel we assume a

“glued-on atmosphere” – i.e., one that co-rotates with the Earth. This allows us

to avoid computationally intensive wind models and set vrel � v � ωC � r, where

v and r describe the state of our spacecraft and ωC is the angular velocity of the

rotating Earth.

Drag Simplified: satellite parameters. The evaluation of (2.6) is further sim-

plified by holding satellite parameters A, m, and CD constant. This implies averaging

of the attitude-dependant parameters A and CD over an orbit period.

4Note that this definition implicitly assumes a spherical model for the Earth. Given the other
uncertainties in the drag model, this is an appropriate assumption.
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The simplifications outlined above are appropriate to a real-time on-orbit implemen-

tation in line with the motivating case for this study. Furthermore, in simulation

(see 2.3.2) this simplified model was found to be sufficiently accurate. This model is

therefore implemented in the final propagator with values given in Table 2.7.

2.2.4 Solar Radiation Pressure

One measurable consequence of the particle nature of light is the existence of elec-

tromagnetic momentum. Quanta of light which strike any non-transparent surface

impart an impulse (a change in momentum) onto that surface. This impulse is of such

a small magnitude that it is insignificant for typical Earthbound kinematic analyses

and is accounted for only in precise laboratory work.

However, in the nearly friction-free environment of Earth orbit, near-constant

sunlight (from a near-constant direction) causes a very real change in momentum.

Following the example of Vallado [26] (p. 577), we model this continuous change in

momentum as a pressure upon the area of the satellite exposed to solar radiation:

aSR � �pSRCSRASR
m

êrsatÑ@ (2.8)

where we define

aSR solar radiation acceleration on spacecraft, km�s�2

pSR solar radiation pressure, kN�m�2 5

CSR surface interaction coefficient (see Table 2.3), unitless

ASR surface area of satellite perpendicular to êrsatÑ@ , m2

m mass of satellite, kg

rsatÑ@ relative position vector from satellite to the Sun, km

êrsatÑ@ rsatÑ@{|rsatÑ@|, unitless

Like the drag acceleration (2.6), the solar radiation pressure acceleration is dependent

on the mass and surface area of the satellite and features a surface-dependent coef-

ficient (see Table 2.3). However, instead of opposing the satellite velocity, it always

5Solar radiation pressure has a nominal value of 4.57 � 10�9 kN�m�2 but varies with solar activity
and with sun-satellite distance; see Appendix D for details.
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acts along the sun-satellite vector. Thus, while drag tends to lower perigee velocity

(and thus reduce the semi-major axis of the orbit), solar radiation pressure can cause

a change of orbital plane, among other effects.

Table 2.3: Radiation Pressure Coefficient

CSR Surface Type Physical Interpretation

0.0 transparent light passes through surface,
no momentum transmitted

1.0 black body light absorbed by surface,
all momentum transmitted

2.0 ideal light reflected back towards source,
reflective body double momentum transmitted

Again, we face challenges determining the values of the parameters in (2.8). For

the purposes of this study, we set CSR, m and ASR constant. These values can be

found in Table 2.7.

2.2.5 Secondary Perturbations

The primary perturbations discussed above are just a few of the forces to which

Earth-orbiting satellites are subjected. In this study, we also examined:

• solid Earth tides – the redistribution of the Earth’s crust, mantle, and core

effected by lunar and solar gravity;

• ocean tides – the analogous redistribution of the oceans;

• Earth albedo pressure – the extension of radiation pressure to include “Earth-

shine”, sunlight reflected off the Earth;

• Earth thermal pressure – the extension of radiation pressure to include the

infrared radiation of the Earth as a “grey body” with a non-zero temperature.

The tidal forces are modelled by modifying the rCnm Snms coefficients in (2.3) (cf.

McCarthy and Petit [36]) while thermal and albedo pressure are modelled in a similar

fashion to solar radiation pressure (cf. Klinkrad and Fritsche [37]).
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Anticipating that these forces would have a relatively minor impact on our nav-

igation solution, we performed an analysis using Satellite Tool Kit (STK 9.2.0), an

industry-standard software produced by Analytical Graphics Inc. (AGI). In this anal-

ysis, we set our initial conditions per Table 2.4 (corresponding to a 12-hour Molniya

orbit). We then propagated a truth orbit6 by including the primary perturbations in

accordance with Table 2.8. We then performed five further simulations: four includ-

ing the primary perturbations and a single secondary perturbation in accordance with

Table 2.9, and one including all primary and secondary perturbations. The period of

analysis was 24 hours (two nominal Molniya orbit periods); for justification, see Note

below. The results can be seen in Figure 2.2.

Table 2.4: Initial Conditions for Molniya Orbit. Orbital elements (see Ap-
pendix A.1) chosen to correspond to a Magellan Aerospace study [38].

semi-major axis a 26 553.4 km

eccentricity e 0.740969

inclination i 63.4�

right ascension of
ascending node

Ω 108.208�

argument of perigee ω 270�

true anomaly ν 0�

epoch t0
00:00:00 UTC,
04 Apr 2012

In this figure, we see the 3D position difference between our truth orbit and the

five modified orbits after twenty-four hours of propagation. This difference starts at

zero (initial conditions are identical: the perigee of our Molniya orbit) and increases

with each orbit. Maximal differences are observed at perigee (12 h, 24 h), a common

result for Molniya orbits as this is the regime of maximum velocity.

It is readily apparent that solid tides cause the most significant modelling errors,

resulting in approximately 62 m of position difference. When combined with ocean

tides (3 m), albedo pressure (4 m), and thermal pressure (14 m), the effects combine

for a total of 73 m of position difference. Bearing in mind the accuracy requirements

6A detailed definition of a truth orbit can be found in Section 2.3.
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Figure 2.2: Position differences when secondary perturbations are modelled during
propagation. Simulation begins at perigee and runs for two orbital periods;
perigees thus occur at 0 h, 12 h, and 24 h.

of the current study (see Section 1.3.3) and the fact that our navigation solution will

be updated by measurements over the orbit (especially at perigee), these secondary

perturbations will not be considered for further analysis. This conclusion agrees with

that of a similar analysis performed by Montenbruck et al. [35] for a satellite in LEO.

Note on the period of simulation: As demonstrated in Chapter 5 of this thesis,

our navigation solution will never complete an entire orbit of propagation without

some form of measurement-based correction. Thus, a two-orbit period for perturba-

tion analysis is appropriate; it allows us to see the effects of each perturbation over a

sufficiently long period of propagation (including a succession of apsis passes) while

retaining the resolution to observe detailed perturbation effects over the entire orbit.

2.3 Verifying the Propagator

In the introduction to this chapter, we recalled the sailors of old as fellow navigators

engaged in the art of propagation. Just as they used winds, currents, and charts to

predict their path, so too have we developed models for our own orbital propagation.

However, lest we sail for the Orient yet run aground in Hispaniola, it is vital to verify
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these models. For that, we must seek the truth.

In navigation studies, a truth orbit is an orbit generated by a trusted source to

which a navigation solution can be compared. When analyzing data from a flown

mission, the truth orbit is often a post-processed ground solution generated from

accurate measurements such as satellite laser ranging. However, concept studies typi-

cally rely on trusted orbit propagators of high fidelity. Such propagators can produce

highly realistic orbits which are known to within machine precision, providing a pre-

cise standard to which we can compare our navigation solution. In addition, we have

complete control over all error sources introduced, allowing us to individually exam-

ine the impact of each error on our solution. Thus, a simulated truth orbit is an

appropriate tool for navigation solution validation.

Using STK’s High Precision Orbit Propagator (HPOP), we generated a number of

truth orbits to validate our propagator. The six orbits, labelled TOB-1 to TOB-6,

are identified in Table 2.5. The forces included in the STK propagation are configured

in accordance with Tables 2.7 and 2.8. Using these orbits, we will first examine the

impact of each force (i.e., the position difference caused by each) to determine whether

its model should be included in our navigation solution. We will then solve (2.1) using

the models we developed above, examining the ability of our models to match the

higher fidelity models in STK.

Table 2.5: Truth Orbits for Propagator Verification

Orbit ID Included Forces Corresponding Equation

TOB-1 a � a2body (2.2)

TOB-2 a � ageoid (2.3) (70 � 70), (2.4)

TOB-3 a � a2body � a3,@ � a3,K (2.5)

TOB-4 a � a2body � adrag (2.6)

TOB-5 a � a2body � aSR (2.8)

TOB-6 a � ageoid � a3,@ � a3,K � adrag � aSR

2.3.1 Impact of the Perturbing Accelerations

Before we examine each of the primary perturbations individually, it is worthwhile to

determine just what impact they cause. For this purpose, we compared TOB-2, -3,
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-4, and -5 to TOB-1. The results can be seen in Fig. 2.3.

In this figure, we notice that geoidal Earth gravity accounts for some 6500 km of

3D position difference after twenty-four hours of propagation, making it by far the

most significant perturbation to our satellite. Beyond this, we observe that third-

body gravity (23 km), drag (0.60 km), and solar radiation pressure (0.17 km) all cause

differences in excess of our accuracy requirements (see Section 1.3.3). Thus, we have

justified their inclusion in our propagator.

2.3.2 Propagator Accuracy

Now that we have developed models for the perturbations significant to our HEO

orbit, we can measure them against the truth models described in Table 2.5. As our

metric, we compared the 3D position difference after twenty-four hours (two nominal

Molniya orbit periods) of propagation. Numerical results for TOB-2 to -6 can be

found in Table 2.6, while TOB-6 is visualized in Fig. 2.4.

Table 2.6: Propagator Verification Results.
3D position differences after twenty-four hours of propagation for:
(i) perturbation truth orbits compared to two-body (TOB-1), and
(ii) propagator models compared to corresponding truth orbits.

Perturbing Truth (i) Perturbation (ii) Model-Truth
acceleration orbit impact, m residual, m

ageoid TOB-2 6 474 534 6.79

a3,@ � a3,K TOB-3 22 653 1.28

adrag TOB-4 604 289.89
(hcutoff � 600 km)

adrag TOB-4 604 7.00
(hcutoff � 865 km)

aSR TOB-5 174 2.28

all the above TOB-6 6 453 150 2.31

Based on these simulations, some key results can be drawn.

1. Conservative forces (i.e. gravity) are modelled accurately;
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Figure 2.3: Position differences when primary perturbations are compared to the
two-body solution. Simulation begins at perigee and runs for two orbital peri-
ods; perigees thus occur at 0 h, 12 h, and 24 h.
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2. As expected (cf. Section 2.2.3), drag was the most difficult force to model ac-

curately. The model accuracy was improved substantially by using the reserved

parameter (uniform atmosphere thickness hcutoff ) for tuning.

3. Solar radiation pressure is sufficiently accurate despite the lack of an Earth

eclipse model.

4. Perturbations tend to counteract each other. This is seen in TOB-6, which has

a total error that is decidedly less than the sum of its parts.

2.4 Chapter Summary

In this chapter, we have introduced the concept of orbit propagation and demon-

strated its reliance on accurate models of the accelerations acting on the propagated

spacecraft. We have discussed a variety of primary and secondary perturbing accel-

erations, presenting mathematical models for the former and discounting the latter

for the present study. We have compared the presented models to a known truth and

found them sufficiently accurate; a summary of the propagator models and the truth

can be found in Table 2.10. Having verified these models, we can now include them

in our navigation studies ahead.
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2.5 Propagator Configuration Tables

Table 2.7: Propagator Constants and Parameters

Ellipsoidal Constants (WGS-84)

Earth gravitational parameter µC 398600.4418 km3s�2

radius of Earth RC 6378.1370 km

Luni-Solar Constants (JPL DE-421)

Sun gravitational parameter µ@ 132.7124400409�109 km3s�2

Moon gravitational parameter µK 4.902800076228�103 km3s�2

Drag Constants

atmospheric density at 500 km [34] ρ500 4.89�10�13 kg�m�3

drag surface area AD 10 m2

satellite mass m 1000 kg

drag coefficient CD 2.2 (unitless)

Earth angular velocity [26] ωC 7.29211585530�10�5 rad�s�1

Solar Radiation Pressure (SRP) Constants

solar radiation pressure at 1 AU (D) pSR 4.56�10�6 N�m�2

SRP surface area ASR 10 m2

satellite mass m 1000 kg

SRP coefficient CSR 1.0 (unitless)
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Table 2.8: STK 9.2.0 HPOP Force Models: Primary Perturbations

Earth Gravity
� model: EGM-96

� 70 � 70

Third-Body Gravity
� model: point-mass

� Sun & Moon included

Drag

� model: Jacchia-Roberts

� F10.7daily � F10.7avg � 150.0

� KP � 3.0

� apparent Sun position

Solar Radiation Pressure

� model: spherical

� apparent Sun position

� dual cone shadow

� lunar eclipse included

� Earth eclipse altitude: 0 km

Note: additional spacecraft parameters can be found in Table 2.7.

Table 2.9: STK 9.2.0 HPOP Force Models: Secondary Perturbations

Solid Earth Tides

� model: time dependent

� 70 � 70

� minimum amplitude: 0 m

Ocean Tides
� model: 30 � 30

� minimum amplitude 0 m

Earth Albedo Pressure
� cK � 1.0

� simple ground reflection

Earth Thermal Pressure � cK � 1.0
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Table 2.10: Summary of propagator models

Earth STK truth EGM-96 70 � 70 on WGS-84 ellipsoid
gravity propagator EGM-96 10 � 10 on WGS-84 ellipsoid

ageoid � ∇U (2.3)

third-body STK truth JPL DE-421 ephemerides, Sun and Moon
gravity propagator JPL DE-421 ephemerides, Sun and Moon

a3 � µ3 prsatÑ3{r3
satÑ3 � rCÑ3{r3

CÑ3q (2.5)

atmospheric STK truth Jacchia-Roberts atmosphere
drag propagator uniform-layer atmosphere

adrag � �1
2
pCDAD{mqρ |vrel|2 êvrel (2.6)

solar STK truth spherical spacecraft model, dual-cone eclipses
radiation propagator spherical spacecraft model, no eclipses
pressure aSR � �ppSRCSRASR{mq êrsatÑ@ (2.8)

secondary STK truth solid Earth tide, ocean tide, Earth albedo
perturbations pressure, Earth thermal pressure

propagator none modelled



Chapter 3

Measurements and their Models

3.1 Introduction

Measurements are essential to our understanding of the real world. Observations

allow us to characterize a physical system and give us basis upon which to propose

and test theories of system evolution. From the first blips of Sputnik to modern

satellite ground stations, satellite operators have used measurements to determine

their spacecraft state.

Measurement-based state determination of spacecraft is primary to the methods

of propagation discussed in the previous chapter, for it is from measurements that

these methods were developed. Centuries ago, Brahe’s detailed observations of Mars

allowed Kepler to discount the circular orbits of Copernicus and formulate his theory

of elliptical motion [39]. More recently, ranging data from the Sputnik and Vanguard

satellites were used to improve models of the Earth’s gravitational field [28], a practice

that continues to this day with satellites such as GRACE, GOCE, and CHAMP

[40]. Measurements also form the basis of initial orbit determination; this process

(which is beyond the scope of this thesis) provides the initial condition necessary for

propagation as formalized in (2.1).

In the current study, we are looking to augment our predictions of satellite motion

on HEO with measurements collected by the satellite as it orbits the Earth. These

measurements will be functions of our spacecraft state and will thus contain informa-

tion useful for our navigation solution. As discussed in Section 1.5.2, we will develop

measurement models in the form of (1.4) – that is,

y � hpx, tq (3.1)

34
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where measurements y are obtained from state vector x and time t through the vector

function h.

This chapter will first introduce a variety of measurements available to our HEO

spacecraft. We will then examine certain measurements with potential to improve

our autonomous navigation solution. This examination will detail a method of sim-

ulation for each measurement and present appropriate models hpx, tq that represent

the measurement and its errors. These models will allow us to use measurements to

update our navigation solution, a process that will be discussed in Chapter 4.

Note on the simulation of measurements: As discussed in the introduction to

this thesis (see Section 1.4), we are completing a navigation study through simulation.

A necessary part of this simulation is the generation of measurements that mimic

those that would actually be received by a spacecraft on our truth orbit. We will

therefore make a distinction between two types of measurement model. Our truth

measurement model is the model which we use to produce the measurements that are

being provided to our navigation solution. Conversely, our filter measurement model

is the model that the navigation solution uses internally to analyze the measurements

it receives. Again, the latter process will be discussed more fully in Chapter 4.

3.2 Measurements for Autonomous Navigation

As discussed in Section 1.4, this study is concerned with the autonomous naviga-

tion of spacecraft in highly elliptical Earth orbits. We will therefore consider only

those measurements that do not rely on the active participation of ground- or space-

based assets. This precludes two common methods of spacecraft state determination:

ranging (both radio and laser) and optical methods.

In his thesis, Hill [41] compiled a list of potential satellite-based measurements

suitable for autonomous navigation. Included among these were a variety of truly au-

tonomous sources: Sun- and star-trackers, horizon scanners (Earth or Moon), magne-

tometers, and pulsar-focused x-ray detectors. However, these measurements – which

rely entirely on naturally observable phenomena – are limited in their ability to de-

termine spacecraft state to the operational precision required for the current study.

Rather, spacecraft navigation has become reliant on so-called semi-autonomous
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measurements – that is, measurements which rely on the pre-existence of some sup-

porting ground- or space-based infrastructure. Under this category fall Global Navi-

gation Satellite Systems (see Note below) and ground beacon systems (e.g., the French

DORIS system). Though these measurements are not strictly autonomous, they do

not require active participation from the supporting infrastructure – i.e., a space-

craft using these systems is only required to receive broadcast signals and does not

itself need to communicate with any component of the system infrastructure. This

preserves the autonomous nature of the navigation solution itself.

Falling neatly into neither of these categories is the inertial measurement unit

(IMU), a collection of accelerometers and gyroscopes onboard a spacecraft that mea-

sures the magnitude and direction of non-conservative accelerations. Though not

explicitly dependent on current spacecraft position, it can nevertheless provide infor-

mation about the evolution of spacecraft position and velocity; see, for example, the

work of Jah et al. [42] on aerobraking in the Martian atmosphere.

Building from the results of Hill [41] and others (see discussion in Section 1.3.1),

we will examine GPS measurements in great detail. We will also discuss other mea-

surements and examine their ability to augment our GPS-based solution.

Note on Global Navigation Satellite Systems: A global navigation satellite

system (GNSS) is a constellation of satellites designed to provide navigation ser-

vices to Earth-based users worldwide. At present, there are two such systems in

full operation: GPS, maintained by the United States Air Force, and GLONASS /

GLONASS1, maintained by the Russian Aerospace Defence Forces. Two additional

systems are currently under development: the European Galileo system and the Chi-

nese BeiDou system2; both are expected to be operational by the end of the decade

[43]. Despite this variety of GNSS options, this study focuses on the use of GPS alone.

Of the four constellations, it is the most widely discussed in the literature, the most

widely used in practise, and has a proven track record for space-based applications.

Despite this focus, it is worth noting that the techniques and discussion developed in

this study can be applied to measurements from any of the above systems.

1Acronym for Global~na� navigacionna� sputnikova� sistema / Globalnaya navigatsion-
naya sputnikovaya sistema, literally Global Navigation Satellite System.

2Officially, the BeiDou Satellite Navigation System, pinyin Běidǒu wèix̄ıng dǎoháng x̀ıtǒng, from
běidǒu, “northern dipper”.
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3.3 The Global Positioning System: an introduc-

tion

The following section draws from an IEEE Spectrum article [44] written by Ivan

Getting, the founding president of Aerospace Corp. and “the force behind the estab-

lishment of the Navstar Global Positioning System” [ibid.].

3.3.1 A brief history of American radionavigation systems

In the first half of the twentieth century, navigation technology leapt from star charts

and chip logs to inertial navigation systems and radionavigation. The latter technique,

radionavigation, employed the newly harnessed technology of radio waves to achieve

accurate positioning in sunshine and cloud. An archetypical example was the ground-

based LORAN (LOng RAnge Navigation) system; it featured coastal transmitters

emitting synchronized signals. By measuring the differences in the time of arrival of

these radio signals, shipborne users could determine their latitude and longitude (see

Figure 3.1).

Following closely on the heels of LORAN was Transit, the first satellite-based

navigation system. Inspired by the use of Doppler-shifted signals to reconstruct the

orbit of Sputnik-1, Transit inverted this technique to allow users around the globe to

determine their latitude and longitude based on the measured Doppler shift of the

signal from a stable oscillator in a known orbit. Though Transit represented a major

advancement from LORAN in both accuracy and coverage, it had its shortcomings;

as discussed by Getting, it was involved, intermittent, and ill-suited for moving users.

In the early 1960s, the United States Air Force undertook initial studies to exam-

ine the navigation of aircraft using radio signals from satellites. System requirements

necessitated continuous and all-weather 3-D passive positioning available to an un-

limited number of users with relatively simple equipment. As the project developed,

the name “Global Positioning System” was proposed – and thus, GPS was born.

3.3.2 GPS: Basis of Operation

At its most basic level, the Global Positioning System is a system of clocks. A

spacecraft orbiting the Earth broadcasts a radio signal representing the accurate time
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Figure 3.1: Families of hyperbolae from LORAN transmitters. P is a master sta-
tion, Q and R are slave stations. Each hyperbola is a locus of all positions
corresponding to one value for the time difference of arrival between the master
and slave signals. A user with measurements for difference P-Q and difference
P-R can be located at the intersection of the two corresponding hyperbolae.
Public-domain figure courtesy of the U.S. Department of the Navy [45].



39

of an onboard clock (the transmitter clock). This time signal is received by a user

on the ground, who compares it to a local clock (the receiver clock) and determines

the offset between the two clocks. Multiplying by the constant speed of radio wave

propagation converts this offset into the expected distance between the two clocks – a

pseudorange. In other words, the time it took for the broadcast signal to reach the user

is directly proportional to the distance between the satellite and the user. Assuming

that the satellite’s position is well known, this pseudorange gives a measurement of

the line-of-sight distance to a known (orbiting) control point – a measurement derived

from the difference between two clocks.

3.3.3 GPS: System Architecture

The first GPS satellite was launched in 1978, with the system being declared fully

operational in 1995 [46]. The operation of the Global Positioning System relies on

three key components: the space segment, the ground segment, and the user.

The space segment consists of a constellation of satellites in a twelve-hour, near-

circular, medium Earth orbit (MEO) at an inclination of 55�. For global coverage,

the System requires a minimum of twenty-four satellites distributed across six or-

bital planes. To ensure continuous operation, on-orbit spares are included in the

constellation; as of December 2013, there were 31 active GPS satellites [47]. As noted

above, each satellite has an onboard atomic clock. A signal representing this clock

is broadcast to the Earth in the form of a repeating pseudo-random noise sequence;

this sequence is unique to each broadcasting GPS satellite and allows the signals from

different satellites to be differentiated. Modulated onto this sequence is a navigation

message containing information necessary for the use of GPS signals in positioning,

including parameters defining the satellite ephemeris and the correction required to

match the onboard clock to GPS time3. For further details on the signal broadcast

by the GPS constellation, please consult the GPS User Interface document [48].

The ground segment measures the orbits and clocks of the satellites, uploading

the latest ephemerides and clock corrections to each satellite in the constellation.

The clock corrections are referenced to GPS time. The ground segment thus ensures

that the broadcast satellite orbit and clock data are sufficiently accurate for user

positioning.

3GPS time is a monotonically increasing time scale identical to UTC with the notable omission
of leap seconds.



40

The user measures the clock signals received and compares them to the local

receiver clock. A user with four satellites in view can measure four independent time

offsets (yielding four pseudorange measurements) to solve for four unknowns: the

user’s three-dimensional position and user clock bias from GPS time. This calcula-

tion is reliant on the broadcast ephemerides and clock corrections. This carries the

additional benefit of precise access to GPS time (and thus UTC).

3.4 GPS in this thesis: Models and Errors

As discussed in the introduction to this Chapter, we want to define measurement

models as functions of state x and time t. In this section, we will mathematically

formulate the GPS pseudorange measurement and its various error sources. As intro-

duced in Section 3.3.2, the pseudorange measurement approximates the straight-line

distance between our spacecraft and the transmitting GPS satellite (hereinafter re-

ferred to as an SV, “space vehicle”). We will receive one pseudorange measurement

for each SV for which our receiver has acquired lock4.

First, we will consider the geometric pseudorange, a measurement that relies only

on geometry and assumes that the receiver clock is well-synchronized to GPS time.

The measurement equation for geometric pseudorange is therefore:

hGPSpx, tq � coli
�
|rptq � rSV piqptbq|

�
(3.2)

where we define:

hGPSpx, tq geometric pseudorange measurement vector, km

rptq position of our spacecraft at the time of signal reception, km

rSV piqptbq position of the ith GPS SV at the time of signal broadcast5, km

and coli denotes a column vector where the ith row is given inside the brackets.

Equation (3.2) models an error-free measurement – the geometric pseudorange

reported is a function of only spacecraft state (via position r) and time (the position

4For a further discussion of GPS lock, see Section 3.6.
5In a real GPS receiver, the SV position is evaluated at the estimated time of signal transmission.

However, for computational simplicity this effect has been ignored in the current study; geometric
pseudoranges are generated and estimated using the instantaneous position of the SV in question.
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of each SV evolves with time). However, this equation – much like the two-body

acceleration from the previous chapter – is but a starting point upon which we must

build a more refined model. This model will include transmission errors, reception

errors, and non-idealities in the propagation of the GPS signal itself. In the following

sections, we will discuss these errors and present mathematical models where appro-

priate. This will enable us to deepen our understanding of the GPS pseudorange

measurement, to better model the signals for simulation, and to better design an

algorithm appropriate to the non-idealities of real-world GPS navigation.

Note on receiver clock error: When we introduced the GPS architecture (Sec-

tion 3.3.3), we noted that four satellites are required for a GPS position lock. The

fourth satellite is necessary to correct the difference between the receiver clock and

GPS system time. The receiver clock bias can be a major error source if not handled

properly. However, as this clock bias can be treated as a state to be estimated rather

than as a measurement error, it is not discussed in this section but is detailed in

Section 3.5.

3.4.1 Tropospheric Error

The troposphere is the lowest region of the Earth’s atmosphere. Extending up to an

altitude between 10 and 16 km, it contains four fifths of the mass of the atmosphere

and virtually all of the atmosphere’s water content [49]. Radio-frequency signals

(including those used by GPS) experience a delay when propagating through the tro-

posphere due to variability of the refractive index of air under changing environmental

conditions. Models for this delay have been developed for Earth-borne GPS users –

see, for example, the work of Mendes and Langley [50]. These models can reduce

resultant position errors to centimetres but require knowledge of local meteorological

conditions.

In this study, we are concerned with the reception of GPS signals by a space-

craft in HEO. Our spacecraft has a perigee of approximately 500 km, well above the

troposphere. Geometrically, very few of the GPS signals received will actually pass

through the troposphere. This is demonstrated in the satellite visibility analysis in

Figure 3.5. As such, in this study we will ignore any signal transiting through the

troposphere by inflating the radius of the Earth by 100 km for the purpose of signal

visibility calculations. This will also remove the need for local weather knowledge,
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simplifying our algorithm.

3.4.2 Ionospheric Error

The ionosphere is the region of the Earth’s atmosphere characterized by the presence

of free ions, both positive and negative. The altitude of its extent varies greatly

with solar activity, but it can generally be thought of as existing between 60 and

1000 km with a peak ion concentration at an altitude of 300 km [51]. These ions

interact with radio signals transiting through the atmosphere, causing pseudorange

signal delay. This has a direct effect on the accuracy of GPS positioning. As discussed

by Klobuchar [52], this delay can reach 300 ns for ground-based users - translating

into pseudorange errors of 100 m.

Fortunately, the ionospheric delay is frequency-dependent; a receiver capable of

receiving multiple GPS frequencies can remove it entirely. In this study, we make the

worst-case assumption of a single-frequency GPS receiver processing only pseudorange

measurements6. Thus, we will need to model the ionosphere twice: once for the

generation of our measurements (in which we will perturb the ideal measurements)

and once in our navigation algorithm.

Ionospheric delay - truth model: For the simulated measurements (our “truth”

error), we adopted the model used by the Carleton GPS simulator (see Section 3.6.1

for simulator details). The model uses the work of Klobuchar [ibid.] as a basis.

In brief, it calculates the vertical ionospheric delay predicted by Klobuchar’s model,

which in turn relies on eight coefficients α0–α3 and β0–β3 transmitted with the GPS

navigation message. The simulator then calculates an obliquity factor based on the

current geometry between the satellite, the transmitting SV, and the Earth. This

obliquity reflects the fact that the GPS signal is not transiting the ionosphere in a

zenith-nadir sense.

The end result of this calculation is an equivalent pseudorange delay of up to 20 m

at our perigee altitude of 500 km. This is added directly to the geometric pseudorange

(3.2) calculated by the simulator. Mathematically, we can represent this as:

htionopx, tq � c � coli
�
∆Tklobpr, rSV piq, αj, βj, tq �OF pr, rSV piqq

�
(3.3)

6Even with single-frequency receivers, it is possible to remove the ionosphere contribution. How-
ever, it requires the use of carrier phase measurements. For further details, please see Section 3.8.
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where, in addition to the variables from (3.2), we have:

htiono ionospheric delay truth model, km

c speed of light, 299 792.458 km�s�1

∆Tklob vertical ionospheric delay via Klobuchar model [52], km

αj, βj ionosphere coefficients for Klobuchar model, unitless

OF obliquity factor (current geometry) for Klobuchar model, unitless

and coli once again denotes a column vector.

Ionospheric delay - filter model: In our navigation algorithm, we again rely on

the work of Klobuchar, whose algorithm has a demonstrated ability to remove 40–80%

of the ionospheric delay. Using this as a baseline, we initialize our simulation with a

randomly selected value from the range [0.4–0.8]. This is our ionosphere factor, IF ,

and represents the accuracy of the ionospheric model on a given day. Our filter model

for ionospheric delay thus takes the form:

hfionopx, tq � IF � htionopx, tq (3.4)

where hfiono is the filter model for ionospheric delay, IF is the ionosphere factor de-

scribed above, and htiono is calculated in (3.3). In short, our filter model removes a

portion of the delay that our truth model introduces, mimicking the actual perfor-

mance of the Klobuchar model for a single-frequency user. The final effect is therefore

an adjustment to the measurements our filter receives:

∆yiono � p1 � IF q � htionopx, tq (3.5)

3.4.3 SV Ephemeris Errors

Broadcast along with the GPS navigation message are parameters defining the pre-

dicted orbits of the GPS satellites. These predictions are based on a four-hour curve

fit and are updated every two hours (IS-GPS-200G [48], paragraph 20.3.4.4). Despite

this frequent update, the broadcast orbits are subject to inaccuracies of a few metres.

These errors in rSV piq, the locations of our space-based control points, have a direct
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impact on the accuracy of our geometric pseudorange in (3.2).

In this thesis, we simulate these errors by purposefully using incorrect SV locations

for the filter calculation of geometric pseudorange. The magnitude of these errors

can be revealed by comparing the broadcast orbits to precise orbits obtained through

post-processing7. The results of one such comparison can be found in Appendix E.

With these results, we can model ephemeris errors by replacing rSV piqptbq in (3.2) with

r∆
SV piqptbq, which is defined as:

r∆
SV piqptbq � rSV piqptbq � r∆xi ∆yi ∆zisT (3.6)

where the components of the delta-vector can be found in Table E.1. Note that in

this table, each satellite is referred to by its pseudo-random noise (PRN) number –

analogous to the SV piq notation used in the equations above. We will therefore use

a modified geometric pseudorange in our filter:

h∆
GPSpx̂, tq � coli

�
|̂rptq � r∆

SV piqptbq|
�

(3.7)

where x̂ reminds us that we are using the estimated spacecraft state (i.e., the filter’s

current estimate) and tb denotes the time of broadcast for the GPS signal8.

While this constant offset model does not precisely reflect what occurs in real GPS

operations (where the inaccuracy varies over the two hour interval between broadcast

orbit updates), it tests the ability of our navigation algorithm to handle inaccuracies

in the GPS ephemerides.

3.4.4 SV Clock Errors

As discussed in Section 3.3.2, GPS is fundamentally a system of clocks. Accurate

GPS measurements are reliant on accurate clocks, where every nanosecond of clock

error translates into approximately 30 cm of pseudorange error. The clocks onboard

GPS satellites rely on highly stable rubidium and cesium oscillators, yet even these

are subject to divergence from true GPS time [54].

Fortunately, these clock differences evolve in a predictable fashion. Though not

entirely deterministic, they contain both periodic elements (where the fundamental

period is approximately the twelve-hour orbit of the GPS satellites) and systematic

7Both broadcast and the precise orbits are available from the International GNSS Service [53].
8See discussion in Footnote 5 (page 40).
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clock variations [54]. The SV clock drifts are measured by the GPS ground segment,

which calculates a second-order polynomial clock correction. This correction is then

broadcast with the GPS navigation message. As with the SV ephemeris, the broadcast

correction is updated every two hours.

From the GPS Interface Specification ([48], paragraph 20.3.3.3.3.1), the broadcast

relationship between GPS time and the time of each SV clock is given by:

tSV piq � tGPS � af0 � af1ptGPS � tocq � af2ptGPS � tocq2 (3.8)

where we define:

tSV piq effective clock time for ith SV at message transmission time, s

tGPS GPS system time, s

toc clock data reference time, s

afj clock correction coefficients for ith SV; s, s�s�1, s�s�2

In the previous section, we compared the broadcast SV ephemerides to precise

ephemerides determined through post-processing. We can perform a similar com-

parison between the broadcast clock correction coefficients and their post-processed

counterparts. The results of such an analysis can be found in Appendix E.

In this thesis, we will simulate errors in the SV clock-correction by perturbing the

measurements received by our filter. Mathematically, we formulate this as:

∆ySV clk � c � coli
�
∆af0,i � ∆af1,iptGPS mod 7200 sq � ∆af2,iptGPS mod 7200 sq2�

(3.9)

where c is the speed of light, the values ∆afj,i can be found in Table E.2, and the

7200 s modulo operation represents the resetting of the clock-correction parameters

every two hours. As in the previous section, each satellite is identified by its PRN

number. Again, while this does not precisely model the true behaviour of clock-

correction errors, it does test the ability of our navigation solution to handle realistic

clock-correction inaccuracies.
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3.5 GPS in this thesis: Receiver Clock Error

In the previous section, we discussed the reliance of GPS measurement accuracy on

the accuracy of the SV clocks. The same argument applies to the clock inside the

local GPS receiver. Unlike the highly accurate clocks onboard the SVs, GPS receivers

typically use inexpensive clocks that are subject to significant divergence from GPS

time. This divergence, known as clock bias and denoted by the variable b, is the

difference between receiver clock time and GPS time:

b � tRclk � tGPS (3.10)

As discussed in Section 3.3.3, a user with four GPS satellites can solve for their

instantaneous position px, y, zq and receiver clock bias b to within the limits of mea-

surement error. GPS receivers exploit this to correct their own clock bias soon after

acquiring the required signals. The clock can then be steered to (nearly) match GPS

time, provided four satellites remain in view.

In the current study, we recognize that clock bias (a) has a direct effect on the

pseudorange measurements we receive, and (b) is recoverable from said measurements.

For this reason, we will treat b as a state and append it to our state vector as follows:

xptq � rrxptq ryptq rzptq vxptq vyptq vzptq bptqsT (3.11)

Mathematically, we can model the measurement effect of receiver clock bias as:

hRclkpx, tq � c � colirbs (3.12)

where c is once again the speed of light. Since many GPS receivers remove their

receiver bias automatically, measurement (3.12) is referred to as an uncorrected pseu-

dorange. As highlighted by Moreau et al. [55], the processing (and modelling) of

uncorrected pseudoranges ensures the observability of the receiver clock bias, an es-

sential capability for navigation when less than four satellites are in view.

3.5.1 Propagating the Receiver Clock

In Chapter 2, we extensively discussed the means by which we propagate the position

and velocity of our satellite. By modelling receiver clock error with its own state, we
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have created a corresponding need for receiver clock propagation.

To address the unique challenge of a HEO orbit, we adopted a hybrid model

for receiver clock propagation. This model represents two distinct modes of clock

operation expected for our receiver on HEO:

• a steered clock is constantly being adjusted to track GPS time within mea-

surement error; while

• a drifting clock evolves according to stochastic processes without any adjust-

ment by the receiver9.

Clock-steering occurs when the GPS receiver has lock on at least four SVs (see Sec-

tion 3.6) and the SVs have a favourable geometry relative to the receiver10. The

completeness of the GPS constellation ensures that these conditions are almost al-

ways met for GPS receivers operating in LEO. However, the same cannot be said for

our HEO satellite; GPS data will at times be insufficient for clock-bias correction.

We therefore require two different propagators: one for a steered receiver clock,

the other for a drifting receiver clock. With these, we will generate a truth for our

receiver clock bias (btrue), perturbing our simulated measurements accordingly:

∆yRclk � c � colirbtrues (3.13)

As discussed more thoroughly in Chapter 4, our state estimator will also require

a propagator. To retain the integrity of our navigation solution, we will purposefully

downgrade its internal propagator. We will then include the estimated clock bias

(best) in our navigation solution measurement model:

hRclkpx̂, tq � c � colirbests (3.14)

Steered receiver clock: As discussed above, a GPS receiver with lock on at least

four SVs will steer its receiver clock to match GPS time. This process of steering is

internal to each receiver and its exact details are not necessarily known to the user.

Thus, we must make an appropriate approximation based on observable data.

9As dicussed by Mikhailov and Vasil’ev [56], the deterministic clock models suited to the highly
stable clocks onboard the GPS SVs are not suitable for less accurate receiver clocks. A stochastic
model is thus the model of choice.

10Specifically, the Time Dilution of Precision (TDOP) must be below a set threshold of 10. For
details on TDOP and its threshold, please see Appendix A.3.
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In a study completed for the German Aerospace Centre (DLR), Montenbruck

[57] examined the behaviour of receiver clock error when the receiver clock is being

steered. Based on his results ([ibid.], Figure 3.2) we adopted a coloured noise model

for our steered clock:
9b � � 1

τs
b� ws (3.15)

In the above, τs is our coloured noise decay constant and ws is a zero-mean white

noise process with standard deviation σs. Such a model is also known as a first-order

Gauss-Markov process or an exponentially correlated Markov process.

Through trial and error we arrived at the parameters listed in Table 3.1, which

provide a signal similar to that observed by Montenbruck. In the table, it is shown

that the filter model for the steered clock is purposely corrupted. This reflects the

real-world uncertainty in receiver performance.

Table 3.1: Steered receiver clock parameters

Truth Model Filter Model

τs 200 s 200 s �Np0, 20 sq
σs 2 ns 2 ns �Np0, 0.2 nsq

Drifting receiver clock: To accurately propagate our receiver clock when it is

not being corrected, a more precise model of clock evolution is required. Dainty et al.

[58] presented a stochastic model appropriate for ovenized crystal clocks typically

used on spaceborne GPS receivers. The model is a two-state model, meaning that we

propagate both clock bias b and its time derivative, clock drift d � 9b. The model is

defined as:

9b � d� wb (3.16a)

9d � wd (3.16b)

where noise vector wk � rwb wdsT is a zero-mean multivariate normal distribution
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with covariance Qdrift. The latter is defined as:

Qdrift �

�
��q1 0

0 q2

�
�� (3.17)

where q1 and q2 are the bias and drift process noises for the ovenized crystal clock.

The numerical values for both q1 and q2 can be found in Table 3.2.

Table 3.2: Drifting receiver clock parameters

Truth Model Filter Model

q1 1.6 � 10�21 s2�s�1 1.6 � 10�21 s2�s�1 �Np0, 0.16 � 10�21 s2�s�1q
q2 3.2 � 10�21 s2�s�3 3.2 � 10�21 s2�s�3 �Np0, 0.32 � 10�21 s2�s�3q

3.6 GPS in this thesis: Link Budget

In Section 3.4, we stated that our GPS receiver will record one pseudorange mea-

surement for every SV for which the receiver has lock. This condition of lock is

technical shorthand; in essence, it means that our GPS receiver is accurately receiv-

ing and decoding the navigation message transmitted by a given SV. Before lock can

be achieved, two criteria must be met:

• first, there must be a clear line-of-sight vector between our receiver and the SV

in question;

• second, the transmitted GPS signal must be strong enough to be successfully

decoded by our receiver.

In the present study, we are simulating GPS pseudorange measurements with

which to validate our navigation solution. A necessary part of this simulation is

the mimicry of the SV lock condition; only when the above two criteria are met

will our navigation solution receive the corresponding pseudorange measurement for

processing.

The first criterion is a straightforward geometric calculation to ascertain whether

the Earth11 is blocking the line-of-sight vector between our receiver and the SV in
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question. The second criterion, however, is more subtle and requires the calculation

of our situation-dependent link budget.

A link budget is a standard method of modelling the transmission of radio-

frequency signals. It accounts for the gains and losses inherent to the transmitter, the

receiver, and the medium of transmission. The summation of all gains and losses is

then compared to a threshold figure which is typically specified by the manufacturer

of the receiver12. If the summation exceeds the threshold, the link budget has been

met and the signal is considered valid.

In this study, we will use an adapted version of the link budget model presented

by Wertz and Larson [34] (p. 551). For simplicity, we will ignore transmitter line

losses and transmission path losses – the former are included in the transmitter power

while the latter are zero in the vacuum of Earth orbit. The link budget thus takes

the form:

C

N0

� Ptx �Gtx �Grx � Lfs � Lt (3.18)

where we define:

C{N0 ratio of received signal power to background noise13, dB�Hz

Ptx transmitter power, dB�W
Gtx transmitter antenna gain, dBi

Grx receiver antenna gain, dBi

Lfs free space loss, dB

Lt temperature loss, dB�J

When generating our measurements, we will calculate the link budget and include the

corresponding pseudorange if the result exceeds the C{N0 threshold. That threshold,

as well as the constant value for Ptx, can be found in Table 3.3. The remaining four

parameters in (3.18) are explained below.

11and its atmosphere; see Section 3.4.1 for details.
12A more refined simulation would use separate thresholds for signal acquisition and signal track-

ing; see Weill [59] for further details and Potti et al. [60] for thresholds appropriate for HEO.
13More properly, the ratio of carrier power to white-noise spectral density.
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Table 3.3: Link budget constants. Parameters chosen to match those in a study
completed by Magellan Aerospace [61] for direct comparison of results.

Parameter Value

C{N0 threshold 35 dB�Hz

Ptx 10 dB�W
Tn 300 K

Antenna gains: The antenna gains Gtx and Grx depend on both the attitude of

our spacecraft and the relative geometry between our spacecraft and a given SV. The

antenna patterns used in this study are axially symmetric with cross-sections given

in Figure 3.2. The transmitter antenna aboard each SV is nadir-pointing, while the

receiver antenna aboard our spacecraft can be configured to point towards zenith,

nadir, or to evolve with the spacecraft attitude.

Temperature loss: The temperature loss Lt, expressed in dB�J, represents the

thermal noise (the random vibration of electrons) inherent to any electrical system.

It is a direct function of the equivalent noise temperature Tn of our receiver:

Lt � 10 log kBTn (3.19)

where the temperature-energy equivalence is realized by the Boltzmann constant

(kB � 1.38 � 10�23 J�K�1). The value for Tn used in this study can be found in

Table 3.3.

Free space loss: The free space loss is an unavoidable fact of electromagnetic wave

propagation. It results from the spherical spreading of electromagnetic radiation and

is given by:

Lfs � 10 log

��
4πdf

c


2
�

� 20 log

�
4π

c



� 20 log f � 20 log d

� 20 log d� 96.398 dB�m�1

(3.20)

where we use d � |rptq � rSV piqptq| and have set f � 1.575 42 GHz, corresponding
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Figure 3.2: Cross-sectional gain of our axially symmetric antennae. Gain (dBi) is
shown as a function of boresight angle. Patterns chosen to match those in a
study completed by Magellan Aerospace [61] for direct comparison of results.
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to the L1 frequency of the GPS system (the standard frequency for pseudorange

measurements).

3.6.1 Calculating the link budget: the GPS simulator

A necessary requirement for the application of (3.2) is the knowledge of rSV piqptq for

all times of interest. To satisfy this requirement, this study employed the GPS simu-

lator currently installed in the Department of Mechanical and Aerospace Engineering

at Carleton University. The simulator is a LabPro-4000 manufactured by Naviga-

tion Laboratories Inc. of Laguna Niguel, CA, USA. When initialized with a truth

trajectory (both translational and rotational) and properly configured, the simulator

provides:

• rSV piqptq, the position of each SV as a function of time;

• geometric pseudorange (see Section 3.4);

• ionospheric delay (see Section 3.4.2); and

• attitude-dependent receiver antenna gain (see Section 3.6).

Further details about the operation of the GPS simulator can be found in Ap-

pendix C.1.

3.6.2 Applying the link budget: satellite visibility

Using the link budget outlined above, we combined our satellite truth trajectory with

the SV ephemerides output from the GPS simulator (see Section 3.6.1) to examine

our ability to lock onto SVs throughout our Molniya orbit.

Nadir and Zenith visibility: To validate our link budget and SV ephemerides,

we ran two cases: one where the receiver antenna was nadir pointing throughout

the entire orbit, the other when it was zenith pointing. This was done for direct

comparison with the Archimedes conceptual study completed by Potti et al. [60],

which examined GPS visibility for a satellite in an 8 hour HEO. The visibility plots

for our 12 hour orbit can be seen in Figure 3.3.

Consulting this figure, we can see that a zenith-pointing antenna has good signal

reception at perigee, with eight or more locked SVs. However, this configuration
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experiences total outage over the entire apogee arc. This contrasts sharply with a

nadir-pointing GPS antenna. This configuration has fewer locked SVs at perigee (as

low as three), but quickly acquires more SVs as its altitude rises and maintains good

SV visibility throughout the orbit. This ability to achieve lock at apogee is visualized

in Figure 3.4, where a nadir-pointing antenna has a clear line of sight to an SV on

the far side of the Earth. These conclusions match those from Figures 3–3 and 3–4

of Potti et al. [ibid.], strongly validating our link budget and SV ephemerides.

The effect of the troposphere: In our next analysis, we considered the effect

of the troposphere on satellite visibility. As discussed in Section 3.4.1, we model the

troposphere by ignoring any signal that passes within 100 km of the Earth’s surface.

The impact of this decision on SV visibility can be seen in Figure 3.5, which shows

the number of satellites blocked by our troposphere model over a single Molniya

orbit. Though the tropospheric intersections are frequent – particularly near perigee

– they are short-lived due to the rapidly changing orbital position of our spacecraft

and the SVs. Numerical analysis of this plot reveals that a signal passes through the

troposphere only 5% of the time. Even when this occurs, it only occurs for one (rarely

two) of the locked satellites at a time. We have therefore shown that our conservative

model for the troposphere has a minimal impact on satellite visibility.

3.6.3 Refining the link budget: side-lobes

As visualized in Figure 3.2, the transmitting antenna onboard each SV is highly

focused with a half-power beamwidth of 21.3�–23.5�, depending on the year of SV

manufacture [62]. This main beam is sufficient to cover the entire Earth from the

altitude of the GPS constellation.

However, this is a simplified model. In accordance with antenna physics, the GPS

transmitter antenna has side-lobes that surround the main lobe. A more realistic

cross-section, which includes these side-lobes, can be seen in Figure 3.6.

In a study completed for the European Space Agency, Lorga [63] concluded that

successful GPS-based navigation on HEO would require the reception of side-lobe

signals. Such reception has been demonstrated in GEO [64] and in HEO [65]. It

is therefore natural for us include their effect in our study – an effect that will be
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Figure 3.3: GPS SV visibility over a single Molniya orbit for a single GPS antenna.
Perigee is located at 0 h and 12 h.
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Figure 3.4: Visualization of GPS visibility on HEO. A zenith-pointing antenna will
only receive GPS signals on the perigee arc when the spacecraft (HEO S/C) is
below the altitude of the GPS constellation. A nadir-pointing antenna is able
to lock on SVs on the opposite side of the Earth throughout the apogee arc.
Figure is not to scale.
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Figure 3.5: Impact of our tropospheric model on SV visibility over a single Molniya
orbit. The blue spikes indicate times when a GPS signal was blocked by our
100 km thick atmosphere.
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Figure 3.6: Cross-sectional gain of the GPS SV transmitter when side-lobes are
included. Gain (dBi) is shown as a function of boresight angle.

explored more fully in Chapter 5.

3.7 Passive Ranging

In the previous sections, we have discussed GPS measurements as a well-suited means

for autonomous navigation. In this section, we will introduce another measurement

type: ground-based beacons. Ground-based beacons are a proven technology for

satellite navigation – see, for example, the performance of the DORIS system noted

in Section 3.8. However, navigation with such beacons has not yet been demonstrated

beyond LEO. Thus, this study considers their inclusion in a manner consistent with

the techniques and error sources developed for GPS, a proven technology for our

highly elliptical orbit regime.

To maintain the spirit of autonomous navigation, our simulated beacons will be

implemented to achieve passive ranging. They will continuously broadcast a signal

that can be received by our satellite in the form of a pseudorange. For this scenario, we

assume that two beacons are in operation at existing Canadian Space Agency ground
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Figure 3.7: The Canadian Space Agency ground station at SED Systems in Saska-
toon, Saskatchewan. c©Daryl Mitchell [66]

stations in Saint-Hubert, Québec (45.48�N, 73.43�W) and Saskatoon, Saskatchewan

(52.13�N, 106.68�W) (see Figure 3.7). It is further assumed that a high-quality dual-

frequency GPS receiver would be co-located with the beacon. In addition to GPS

measurements, this receiver would have access to corrections broadcast by the Global

Differential GPS (GDGPS) system.

Having defined the scenario, we now turn our attention to the four main sources

of pseudorange error outlined in Section 3.4. For the purposes of passive ranging:

• as noted by Mendes and Langley [50], tropospheric delay can be reduced to

an error level of centimetres using local weather measurements;

• ionospheric delay can be estimated using local ionospheric conditions – these

conditions can be measured by the dual-frequency receiver as it monitors in-

coming GPS signals and their delay;

• beacon location errors, analogous to SV ephemeris errors, can be eliminated

by a one-time determination of beacon location through a high-accuracy GPS

survey;

• finally, beacon clock errors, analogous to SV clock errors, can be reduced to

the order of nanoseconds using the dual-frequency receiver augmented with the

GDGPS corrections (cf. Bar-Sever et al. [67]).

Having thus discounted the main sources of pseudorange error, we will apply a white-

noise signal to model the remaining non-idealities in our system.
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Beyond these considerations, these beacon signals are treated with the same

amount of realism as the GPS signals. Valid signals must satisfy geometric considera-

tions (specifically, an above-horizon constraint of 10�) and the link budget, including

a transmitter profile identical to that of the GPS constellation. Simulated measure-

ments will also be subject to receiver clock error derived from the same clock used

in the GPS receiver. In effect, we have added two additional GPS satellites which

are fixed to the surface of the Earth and broadcast outward. This was done in an

attempt to minimize the additional hardware14 and software required for a passive

ranging implementation.

Though such a system has not yet been implemented for HEO, the passive ranging

scenario outlined above preserves the autonomous nature of our navigation solution

– i.e., once the beacons have been constructed no active intervention on the part of

the ground is required. Further, it is achievable with standard ground- and space-

based components. We will explore the potential for passive ranging to improve the

navigation solution in Section 5.4.5.

3.8 Other Measurements

In the preceding sections, we have presented GPS pseudorange measurements and

passive ranging measurements as well-suited to our goal of autonomous spacecraft

navigation. However, these are not the only measurements that might be available to

our spacecraft. In this section, we will briefly discuss other measurements that were

considered for use in our autonomous navigation solution.

Some of the measurements considered for this study have not yet been demon-

strated beyond LEO:

• The NASA-led Global Differential GPS (GDGPS) network measures GPS

signals from Earth and broadcasts corrections to land, sea, air, and space. These

corrections all but eliminate ephemeris and ionospheric errors, enabling position

accuracies of better than 30 cm (3D RMS) in LEO [68].

• The CNES15 -led system of ground beacons, DORIS (Doppler Orbitography

and Radiopositioning Integrated by Satellite), enables satellites to measure the

14Additional receiver hardware would be required as our beacons would operate on a frequency
different from that of the GPS constellation.

15Centre National d’Études Spatiales, the space agency of France.
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Doppler shift of known transmitters. This system has been used by a number

of LEO satellites for onboard real-time positioning, including the navigation of

Jason-2 to better than 7.7 cm (RMS) in the radial component [69].

• The operational GLONASS16 constellation can be used to supplement GPS mea-

surements. This application has been tested in space by various Roscosmos mis-

sions; notable among them is a Soyuz-Mir experiment that saw 3D 1σ position

accuracy increase from 20 m (GPS alone) to 12 m (GLONASS/GPS) [70].

Should further studies or flight experiments demonstrate these systems beyond LEO,

they each have potential to improve the autonomous navigation solution for a space-

craft in HEO.

Other measurements considered for this study are entirely feasible beyond LEO,

yet they were not examined in greater detail due to time constraints:

• The most promising additional measurement is that of GPS carrier phase, a

measurement derived from the GPS carrier signal. As noted by Montenbruck

et al. [71], single frequency receivers can combine carrier phase measurements

with pseudorange measurements to eliminate ionospheric error, enabling an

accuracy of 1 m (3D RMS) in LEO.

• Another promising measurement is the use of an onboard accelerometer to

update the spacecraft state during periods of high non-conservative acceleration

(i.e. thrusting events or re-entry). As noted by Zanetti and D’Souza [72],

such an accelerometer can minimize its own bias between thrusting events by

constant self-calibration using other onboard measurements (e.g., GPS).

• A Magellan Aerospace study [73] under the STDP outlined in Section 1.3.3

examined the navigation of a spacecraft in a Tundra orbit (see Section 1.2.1)

using purely celestial measurements – that is, images of the Earth, Moon,

and stars using onboard star-trackers and imagers. Navigation solutions were

achieved to within a few kilometres, agreeing with the findings of Hill [41].

After proper study has been complete, future satellites could fuse one or more of these

additional measurements as a means to overcome some of the GPS-based positioning

inaccuracies noted throughout this chapter.

16See Note in Section 3.2
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Table 3.4: Summary of measurement errors and models for GPS pseudorange

tropospheric truth signals passing within 100 km are blocked
delay filter not modelled

ionospheric truth measurements perturbed by scaled Klobuchar model
delay ∆yiono � p1 � IF q � htionopx, tq (3.5)

filter not modelled

SV ephemeris truth uses exact ephemerides
error hGPSpx, tq � coli

�
|rptq � rSV piqptq|

�
(3.2)

filter uses perturbed ephemerides
h∆
GPSpx̂, tq � coli

�
|̂rptq � r∆

SV piqptq|
�

(3.7)

SV clock truth measurements perturbed by time-varying clock error
error ∆ySV clk � c � coli r∆af0,i � ∆af1,ip♦q � ∆af2,ip♦q2s (3.9)

(♦ � tGPS mod 7200 s)

filter not modelled

receiver clock truth measurements perturbed by clock bias truth
error ∆yRclk � c � colirbtrues (3.13)

filter filter estimates clock bias and its effect
hRclkpx̂, tq � c � colirbests (3.14)

model truth y � hGPSpx, tq � ∆yiono � ∆ySV clk � ∆yRclk
summary filter ŷ � h∆

GPSpx̂, tq � hRclkpx̂, tq

3.9 Chapter Summary

In this chapter, we have introduced the concept of measurements and outlined the

role they will serve in our autonomous navigation solution. First, we detailed the

GPS pseudorange measurement, introducing models for GPS signal propagation and

models for the major pseudorange error sources (see Table 3.4). Related to this mea-

surement, we introduced two new states modelling our receiver clock and detailed

a means of simulating its impact on our psuedorange measurements. Next, we in-

troduced the passive ranging measurement, a beacon-based form of ranging that is

compatible with our goal of autonomous navigation. Finally, we outlined a number of

measurements not considered in this study and summarized their potential to improve

our navigation solution. With these tools in hand, we are prepared to incorporate



62

measurements in our autonomous navigation solution.



Chapter 4

Nonlinear Filter Theory

In the context of navigation, filtering is the fusion of propagation and measurement

to achieve a more accurate solution than either method can provide alone. Returning

to the age of sail, the centuries-old art of dead reckoning was greatly enhanced by

the updated position estimates permitted by the marine chronometer and sextant.

We will echo this example of fusion for navigation as we combine our dynamic and

measurement models from Chapters 2 and 3 in our quest for the optimal navigation

solution for a spacecraft on HEO.

As introduced in Section 1.5.3, the classic algorithm used for filtering of dynamic

systems is the Kalman Filter. In the words of the National Academy of Engineering1,

“The Kalman filter revolutionized the field of control theory and has become pervasive

in engineering systems.” [74] Among these many systems are those designed for inertial

navigation, for airborne submarine detection, and for radar tracking of the now-retired

Space Shuttle [ibid.].

The Kalman filter owes its ubiquity to a number of key factors. First, it is a

recursive filter; once the dynamic and measurement models are defined, the current

state estimate (and corresponding estimate of state uncertainty) is calculated based

only on the preceding estimate and a current measurement. This recursive nature

and the corresponding computational simplicity contrasts sharply with batch filtering

methods (i.e. a least squares curve-fitting). Second, despite its recursive nature, each

estimate is reliant on all previous estimates and measurements – these are captured

in the state uncertainty which is carried forward through each estimation. Finally,

the Kalman filter contains explicit variables defining system uncertainty; these can

be adjusted (“tuned”) for optimal filter performance.

1Citation for the 2008 Draper Prize.
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In this chapter, we will first introduce Kalman’s linear filter. Next, we will outline

a variety of nonlinear filters appropriate to our non-linear problem of satellite naviga-

tion. Finally, we will give a brief sampling of the many missions to date which have

used a Kalman filter for navigation. With this basis established, we will be ready for

the application of these filters in Chapter 5.

4.1 The Discrete Linear Kalman Filter

4.1.1 Problem Definition

Following the derivation of de Ruiter et al. [10] (p. 477), we shall examine a system

of the form2:
xk � Φk�1xk�1 �wk�1 (4.1a)

yk � Hkxk � vk (4.1b)

where we define:

xk state vector, xk P Rn

Φk state transition matrix, Φk P Rn�n

wk modelling error, wk P Rn

yk measurement vector, yk P Rm

Hk measurement model matrix, Hk P Rm�n

vk measurement error, vk P Rm

and the subscript k refers to time tk. We will treat xk, wk, yk, and vk as random

variables. We will also assume that xk, wk, and vk are jointly independent for all tk.

Finally, we will assume that our error vectors obey:

Epwkq � 0

Epvkq � 0

Epwkw
T
j q � Qkδkj ¡ 0

EpvkvTj q � Rkδkj ¥ 0
(4.2)

2Note that this system has no input term. This is due to two factors. First, the system consid-
ered in this study is not controlled. Second, the inclusion of a control term would not affect the
performance of the filter as the control term does not appear in the estimation error dynamics.
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where Qk P Rn�n is the process noise covariance, Rk P Rm�m is the measurement

noise covariance, and δkj is the Kronecker delta.

The Kalman filter is a recursive method to calculate state estimate x̂k at time tk.

For each recursion, it requires a previous state estimate x̂k�1, the corresponding state

covariance:

Pk�1 � E
�pxk�1 � x̂k�1qpxk�1 � x̂k�1qT

�
, (4.3)

and a measurement yk. From these, the Kalman filter will provide a state estimate x̂k

that “best” approximates the true state xk to within the limits of the noise vectors

(i.e., to within the limits defined by Qk and Rk). This “best” approximation is

defined as the estimate which minimizes the sum of the squares of the error in each

component of our state vector:

J � pxk � x̂kqT pxk � x̂kq � tracepPkq (4.4)

where J is the cost function which we are looking to minimize. For this reason, the

Kalman filter is also known as a minimum variance estimator.

4.1.2 Algorithm

The Kalman filter algorithm can be understood as a two-part process:

• the time update, where the physical model of the system as defined in (4.1a)

is used to propagate the solution from time tk�1 to time tk. The resulting state

estimate x̂�k and covariance P�
k are denoted a priori (Latin, “from the former”).

• the measurement update, where measurements of the system state as defined

in (4.1b) are used to update the solution at time tk. The resulting state estimate

x̂�k and covariance P�
k are denoted a posteriori (Latin, “from the latter”).

With these definitions in mind, the algorithm proper takes the form:

The Kalman Filter

Time update:

x̂�k � Φk�1x̂
�
k�1 (4.5a)

P�
k � Φk�1P

�
k�1Φ

T
k�1 �Qk�1 (4.5b)
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Measurement update:

Kk � P�
k HT

k pHkP
�
k HT

k �Rkq�1 (4.5c)

x̂�k � x̂�k �Kkpyk �Hkx̂
�
k q (4.5d)

P�
k � pI�KkHkqP�

k pI�KkHkqT �KkRkK
T
k (4.5e)

where Kk is the Kalman gain (discussed below), I is an appropriately sized identity

matrix, and all other variables retain their definitions from the previous section.

The genius of the Kalman filter lies in the measurement correction in (4.5d). In

this equation, we compute the difference between our true measurement yk and our

predicted measurement ŷk � Hkx̂
�
k . This difference is known as the innovation or

measurement residual. The state estimate x̂�k is then corrected by this innovation

through some gain Kk. This so-called Kalman gain, calculated in (4.5c), is designed

specifically to minimize the cost function in (4.4).

The Kalman filter is thus at its most fundamental form a predictor-corrector;

it predicts the a priori state using the physical model, then updates this estimate

with measurements according to the measurement model. The minimization of state

variance, combined with the form of the estimator assumed by (4.5a) and (4.5d),

results in the Kalman filter’s status as the optimal linear estimator – that is, the

optimal estimator using only linear functions.

For further information, please consult Kalman’s original paper [22] or an appro-

priate textbook (e.g. Crassidis and Junkins [75], Simon [76]).

4.2 Nonlinear Kalman Filters

As discussed in the previous section, the Kalman Filter is the optimal linear estimator.

However, the majority of real-world systems are nonlinear – including all models

introduced in Chapters 2 and 3. We recall that such systems can be modelled as:

9xptq � f
�
xptq, t��wptq (4.6a)

yptk � h
�
xptkq, tk

�� vptkq (4.6b)

where all variables retain their definitions from the previous section. Note that while

the dynamic model is continuous on all times t, the measurement model is evaluated

only at discrete times tk.
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Figure 4.1: Apollo 10 Lunar Module Snoopy as seen from Command Module Charlie
Brown shortly before rendezvous in lunar orbit. A Kalman filter onboard Snoopy
converted radar and IMU measurements into the precise relative navigation
solution required for a successful rendezvous [13].
Public-domain image courtesy of NASA [77].

We are therefore seeking an algorithm similar to the Kalman Filter which is ap-

propriate to system (4.6). In the following sections, three such algorithms will be

introduced, each with their own strategy to apply the optimal linear estimator to the

general nonlinear system.

4.2.1 Extended Kalman Filter

The following section draws from an IEEE Control Systems Magazine article [74]

written by Mohinder Grewal and Angus Andrews, coauthors of a number of works on

the Kalman filter and its application.

Shortly after Kalman published his seminal paper, he was invited to present his

results at the NASA Ames Research Centre (ARC) in Mountain View, California. The

Dynamics Analysis Branch at ARC had been tasked with a monumental challenge:

trajectory estimation and control for a manned mission to the Moon. Kalman’s

recursive solution intrigued the Branch chief, who initiated a campaign of intense
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simulation on the ARC mainframe to demonstrate the validity of the Kalman filter

through repeated Monte Carlo simulations.

Having verified the Kalman filter, the engineers at ARC sought a means by which

it could be applied to the non-linear problem of spacecraft trajectory estimation.

Their solution to this problem came to be known as the Extended Kalman Filter

(EKF). Further Monte Carlo simulations demonstrated the ability of the EKF to

retain sufficient accuracy for the Apollo trajectory problem on a mere 36 bits of

floating point arithmetic. The rest, as highlighted in Figure 4.1, is history.

In the decades since this successful implementation, the EKF has become the

de facto standard for nonlinear state estimation. Its fundamental simplification is

a first-order Taylor expansion of the functions fpx, tq and hpx, tq about a reference

trajectory which follows the noise-free dynamics (w � 0 or v � 0, as appropriate).

This Taylor expansion is truncated after the first order. We therefore require the

Jacobians of our nonlinear models:

F
�
xptq, t� � B

Bxfpx, tq (4.7a)

H
�
xptq, t� � B

Bxhpx, tq (4.7b)

Note that while these functions Fpx, tq and Hpx, tq are notationally similar to the

matrices in (4.1), they are distinct in their definition and role.

The algorithm itself is outlined below. Note that in the interest of concise notation,

we have adopted the convention xptkq� ñ x�k . As with the Kalman filter, we seek an

estimate x̂�k and its covariance P�
k . These quantities are obtained from their previous

values (x̂�k�1, P�
k�1) and are improved by measurements yk.

The Extended Kalman Filter

Time update:

x̂�k � x̂�k�1 �
» tk

tk�1

f
�
x̂pτq, τ� dτ

����
x̂ptk�1q�x̂�k�1

(4.8a)

Φptk, tk�1q � exp
�
Fpx̂�k�1, tk�1q � ptk � tk�1q

�
(4.8b)

P�
k � Φptk, tk�1qP�

k�1Φptk, tk�1qT �Qk�1 (4.8c)
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Measurement update:

Kk � P�
k Hpx̂�k , tkqT

�
Hpx̂�k , tkqP�

k Hpx̂�k , tkqT �Rk

��1
(4.8d)

x̂�k � x̂�k �Kk

�
yk � hpx̂�k , tkq

�
(4.8e)

P�
k � �

I�KkHpx̂�k , tkq
�
P�
k

�
I�KkHpx̂�k , tkq

�T �KkRkK
T
k (4.8f)

In the above, we note that our Jacobians Fpx, tq and Hpx, tq appear explicitly in

the calculations of the covariance matrices and Kalman gain; this is indicative of the

linearization that occurs during the derivation of the EKF. However, the full nonlinear

models are retained for the state propagation (4.8a) and measurement update (4.8e);

this improves the accuracy of our state estimates without abandoning the form of the

Kalman filter.

Further examining (4.8a), it appears that the EKF algorithm calls for the integra-

tion of the random variable x̂ptq through the function f
�
x̂ptq, t�. Though the physical

model in (4.6a) is stochastic and the estimate x̂ptq is itself based on the random

measurements given in (4.6b), the EKF works with realizations of both the measure-

ments and the state estimate. The numerical integration in the EKF is therefore

deterministic and is based on the Riemann definition of the integral.

In the case of the time update for this particular formulation of the EKF, a further

assumption has been made. As a result of our linearization, the state transition matrix

Φptk, tk�1q now corresponds to the differential equation:

d

dt
x̃ � F

�
x̂ptq, t� x̃ (4.9)

where x̃ � x � x̂ is the error in our state estimate. This equation is posed on the

interval rtk�1, tks with initial condition x̃�k�1 � xk�1 � x̂�k�1. For sufficiently small

sample periods we may treat F
�
x̂ptq, t� as a constant. The state transition matrix

corresponding to such an equation is the one given in (4.8b).

A final clarification can be made regarding the process noise covariance Qk�1.

Recalling the discrete-time definition of Qk�1 in (4.2), we can define its continuous-

time counterpart as:

E
�
wptqwpτqT � � Qptqδpt� τq (4.10)

where δpt� τq is the Dirac delta function. Qk�1 is then obtained by integrating Qptq
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over the period of the time update:

Qk�1 �
» tk

tk�1

Φptk, τqQpτqΦptk, τqT dτ (4.11)

allowing us to incorporate knowledge of our continuous-time process noise wptq into

the EKF algorithm.

In summary, the Extended Kalman Filter is a straightforward means by which to

apply the Kalman filter algorithm to a non-linear system. It has successfully been

applied to many different estimation problems, including the Apollo trajectory esti-

mation problem. However, its fundamental basis on a linearization about a reference

trajectory requires that estimation errors remain small for accurate filter operation.

4.2.2 Unscented Kalman Filter

As outlined in the previous section, the Extended Kalman Filter allows us to apply

the Kalman Filter algorithm to a nonlinear system by means of a linearization about

a reference trajectory. However, this linearization has its limitations. Determination

of the optimal values for process noise Qk�1 and measurement noise Rk (i.e., tuning

the filter) can be a time-consuming task. Even a well-tuned filter can experience

difficulties if operational conditions cause the nonlinearities of a system to dominate

the system dynamics. Such was the case for the Apollo docking EKF, which made

heavy use of an “astronaut-in-the-loop” and required frequent restarting [78].

Learning from these experiences, analysts in the latter part of the 20th century

began to reformulate the Kalman filter for application to nonlinear systems. One

such reformulation is the Unscented Kalman Filter (UKF), first proposed by Julier

and Uhlmann [79]. The UKF retains the Kalman filter’s elegant architecture: state,

process, and measurement uncertainties are all captured through covariance matrices.

However, the UKF avoids the need for linearization (i.e., the need for Jacobians) by

means of the unscented transform. For this and other reasons, the UKF has gained

widespread acceptance; notably, it played a key role during the entry, descent, and

landing sequence for the Mars Science Laboratory [80].

In the rest of this section, we will define the unscented transform and present an

algorithm for the UKF, a filter which incorporates this transform twice: once in the

time update and again in the measurement update. It is worth noting that we will be

using the scaled unscented transform; as outlined by Wan and van der Merwe [81], the
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additional parameters of this transform allow us to optimize the unscented transform

for a given application. These parameters will be further discussed in Section 5.5.

Note on the word “unscented”: In an interview, Uhlmann [78] explained the

naming of his proposed transform and filter:

One evening everyone else in the lab was at the Royal Opera House, and

as I was working I noticed someone’s deodorant on a desk. The word

“unscented” caught my eye as the perfect technical term. At first people

in the lab thought it was absurd... [yet] within a few months we had a

speaker visit from another university who talked about his work with the

“unscented filter.”

The Unscented Transform

To introduce the unscented transform, we shall consider the transformation of state

estimate x̂ P Rn and state covariance P P Rn�n through a nonlinear function z �
gpxq P Rm. The unscented transform replaces x̂ and P with a set of sigma points Xi
where i � 0, ..., 2n. These sigma points are calculated directly from x̂ and P and are

defined such that:

x̂ �
2ņ

i�0

wmi Xi (4.12)

P �
2ņ

i�0

wci pXi � x̂qpXi � x̂qT (4.13)

where wmi and wci are appropriately defined mean and covariance weights. Next, we

pass each of our sigma points through our nonlinear function gpxq to obtain our

transformed sigma points Gi:

Gi � gpXiq i � 0, ..., 2n (4.14)

Finally, we calculate the mean and covariance of our transformed sigma points:

ẑ �
2m̧

i�0

wmi Gi (4.15)
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Pz �
2m̧

i�0

wci pGi � ẑqpGi � ẑqT (4.16)

Thus, we can obtain an approximation to our transformed state ẑ and its covariance

Pz without the need to evaluate the Jacobian of our nonlinear function gpxq.

The Scaled Unscented Kalman Filter

With the unscented transform in hand, we can define our UKF algorithm as follows.

Given x̂�k�1, P�
k�1, and a measurement yk P Rm:

1. Choose scaled unscented transform parameters α, κ, and β, and calculate:

λ � α2pn� κq � n (4.17a)

where λ is a scaling parameter and n is the dimension of x.

2. Perform the upper Cholesky decomposition (analogous to a matrix square root)

of the state covariance, S�k�1 � cholpP�
k�1q, and calculate the sigma points:

X�0,k�1 � x̂�k�1,

X�i,k�1 � x̂�k�1 �
?
n� λ � s�k�1,i,

X�i�n,k�1 � x̂�k�1 �
?
n� λ � s�k�1,i, i � 1, ..., n

(4.17b)

where s�k�1,i is the ith column of S�k�1.

3. Propagate the sigma points to obtain:

Fi � x̂�k�1 �
» tk

tk�1

f
�
x̂pτq, τ� dτ

����
x̂ptk�1q�X�

i,k�1

, i � 0, ..., 2n (4.17c)

4. Evaluate the a priori state estimate and covariance:

x̂�k �
2ņ

i�0

wmi Fi (4.17d)

P�
k �

2ņ

i�0

wci pFi � x̂�k qpFi � x̂�k qT �Qk�1 (4.17e)
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where

wm0 � λ

n� λ
, wc0 � wm0 � 1 � α2 � β, wmj � wcj �

1

2pn� λq , j � 1, ..., 2n

(4.17f)

5. Perform the upper Cholesky decomposition S�k � cholpP�
k q, and calculate the

sigma points:

X�0,k � x̂�k ,

X�i,k � x̂�k �
?
n� λ � s�k,i,

X�i�n,k � x̂�k �
?
n� λ � s�k,i, i � 1, ..., n

(4.17g)

6. Transform the sigma points to obtain:

Yi,k � hpX�i,k, tkq, i � 0, ..., 2n (4.17h)

and evaluate the estimated measurement, the estimated measurement covari-

ance, and the estimated state-measurement variance:

ŷk �
2ņ

i�0

wmi Yi,k (4.17i)

Pyy,k �
2ņ

i�0

wci pYi,k � ŷkqpYi,k � ŷkqT �Rk (4.17j)

Pxy,k �
2ņ

i�0

wci pX�i,k � x̂�k qpYi,k � ŷkqT (4.17k)

7. Evaluate the a posteriori state estimate and covariance:

x̂�k � x̂�k �Kkpyk � ŷkq (4.17l)

P�
k � P�

k �KkPyy,kK
T
k (4.17m)

where

Kk � Pxy,kP
�1
yy,k (4.17n)
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4.2.3 Cubature Kalman Filter

A more recent reformulation of the Kalman Filter for nonlinear systems is the Cu-

bature Kalman Filter (CKF) proposed by Arasaratnam and Haykin [82]. In their

derivation, the authors recall that a state estimate x P Rn and its covariance P P Rn�n

are themselves representative of an underlying state probability distribution. While

the UKF approximates this probability distribution using a set of sigma points, the

CKF approximates the integrals necessary to pass a Gaussian probability distribution

through a nonlinear transformation. These multidimensional integrals are approxi-

mated by means of a spherical-radial cubature rule:

»
Rn

gpxqppxqdx �
m̧

i�1

wigpxiq (4.18)

where gpxq is our nonlinear transformation, ppxq is the Gaussian probability distri-

bution of our state, wi are cubature weights, and xi are cubature points. In the CKF,

the chosen cubature rule results in cubature points defined as:

xi � x̂�?
n � si,

xi�n � x̂�?
n � si, i � 1, ..., n

(4.19)

where si is the ith column of S � cholpPq, the upper Cholesky decomposition of our

covariance matrix.

In the equation above, we note that there are a total of 2n cubature points. When

all points are weighted equally, the cubature weights become:

wi � 1

2n
i � 1, ..., n (4.20)

With these definitions in hand, we are ready to apply our spherical-radial cubature

rule in the context of a nonlinear filter.

The Cubature Kalman Filter

For brevity, we have omitted the CKF algorithm from the current chapter as it is

nearly identical to the UKF algorithm. The CKF algorithm can be obtained from

the UKF algorithm above by setting α � 1, κ � 0, and β � 0. These parameters

result in uniform sigma point weights wmj � wcj � p2nq�1 for j � 1, ..., 2n and a
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suppressed central sigma point (wm0 � wc0 � 0).

4.2.4 Continuous-Discrete Kalman Filtering

For our final adaptation of the Kalman filter to nonlinear systems, we will revisit the

time update from our UKF summary in Section 4.2.2. Examining (4.17b) through

(4.17f), we note that the sigma points are defined at tk�1 and propagated forward to

tk individually. It is from these individually propagated sigma points that we obtain

our time-updated state estimate x̂�k and covariance P�
k .

As an alternative time update, Särkkä [83] proposed the use of the unscented

transform to realize continuous dynamics for the physical model in a Kalman filter.

Such an approach was found to exhibit numerical stabilities under certain integration

constraints3.

To realize this time update, we must redefine our sigma points in continuous time:

X0 � x̂,

Xi � x̂�
?
n� λ � si,

Xi�n � x̂�
?
n� λ � si, i � 1, ..., n

(4.21)

where all variables retain their UKF definitions. We can then define a composite

function in continuous time which is dependent on these instantaneous sigma points:

f̂px̂, tq � wm0 fpX0, tq � wm1 fpX1, tq � ...� wm2n fpX2n, tq (4.22)

The function f̂px̂, tq can then be directly propagated to advance our state estimate

forward through time. When implemented, such a function will require our numerical

integrator to re-evaluate the sigma points at each timestep of integration.

Below, we have outlined the algorithm of Särkkä [ibid.] for a continuous time

update. This algorithm propagates x̂�k�1 and P�
k�1 into x̂�k and P�

k . When this

algorithm takes the place of (4.17b) through (4.17f), we achieve a new method of

filtering where the time update is achieved in continuous time and the measurement

update is achieved in discrete time. This filter is known as the Continuous-Discrete

Unscented Kalman Filter (CDUKF).

3Specifically, as the timestep of integration was increased in a fixed-step Runge-Kutta integration
scheme, the continuous dynamics outperformed the discrete dynamics [83].
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As noted in Section 4.2.3, the algorithm for the Cubature Kalman Filter is nearly

identical to that of the UKF. Thus, by replacing the sigma points and weights with

cubature points and weights we can realize a Continuous-Discrete Cubature Kalman

Filter (CDCKF).

Continuous Time Update for the CDUKF and CDCKF

Note: This algorithm is designed for use with the UKF in Section 4.2.2; all vari-

ables retain their definition from that section. To realize the CDCKF, apply the

changes detailed in Section 4.2.3.

1. Define the sigma points in continuous time:

X0 � x̂,

Xi � x̂�
?
n� λ � si,

Xi�n � x̂�
?
n� λ � si, i � 1, ..., n

(4.23a)

2. Define a continuous function f̂ which is a weighted summation of the physical

model fpx, tq applied to each sigma point:

f̂ �
2ņ

i�0

wmi fpXi, tq (4.23b)

3. Define an intermediate matrix Γ which will be used in the time derivative of

our state covariance:

Γ �
2ņ

i�1

wci pXi � x̂q
�
fpXi, tq � f̂

	T

�
2ņ

i�1

wci

�
fpXi, tq � f̂

	
pXi � x̂qT

�Qptq (4.23c)

where Qptq is the continuous process noise covariance.

4. Define a matrix function ΦpAq which will be used in the time derivative of our

state covariance:

ΦpAq � s triupAq � 1
2
diagpAq (4.23d)
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where s triu(A) is the strictly upper triangular part of matrix A (i.e., the com-

ponents above the main diagonal) and diag(A) is the diagonal part of A.

5. With the definitions above, the time derivative of our state estimate x̂ and

Cholesky-decomposed state covariance S � cholpPq can be related as:

dx̂

dt
� f̂ , (4.23e)

dS

dt
� SΦ

�
S�1ΓS�T

�
. (4.23f)

6. Finally, taking all of the previous equations into account we can realize our time

update in continuous time:

x̂�k �
» tk

tk�1

dx̂

dτ
dτ

����
x̂ptk�1q�x̂�k�1

(4.23g)

S�k �
» tk

tk�1

dS

dτ
dτ

����
x̂ptk�1q�x̂�k�1,Sptk�1q�S�k�1

(4.23h)

P�
k � SkS

T
k (4.23i)
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4.3 Kalman Flight Heritage

Throughout this chapter, we have implicitly assumed that the Kalman filter and its

nonlinear derivatives are suitable for our current application. This assumption has

basis in the literature; as Montenbruck [35] notes, Kalman filtering of GPS position

fixes is a flight proven technology.

In 1982, Landsat-4 became the first spacecraft to feature an onboard GPS receiver

[84]. In the ensuing decades, it has become common for satellite missions in LEO

to use GPS signals for the purposes of navigation. However, the analysis of these

signals in a Kalman filter to achieve an onboard navigation solution is a more recent

development. Notable examples of the latter include:

• the BIRD microsatellite (launched 2001), which demonstrated real-time au-

tonomous navigation by using GPS signals to achieve 5 m (3D RMS) position

accuracy in LEO [85];

• the PROBA-2 microsatellite (launched 2009), which employs a commercial-

off-the-shelf single-frequency GPS receiver and achieves a real-time position

accuracy of 1.1 m (3D RMS) [71]; and

• the relative navigation mission PRISMA (launched 2010), which features two

satellites flying the same receiver as PROBA-2 and achieves metre-level absolute

positioning and decimetre-level relative positioning [86].

In addition to LEO flight heritage, the Kalman filter has been examined for GPS-

based navigation in HEO. These efforts include:

• a 1996 study by Potti et al. [60] for the never-flown Archimedes mission, fea-

turing simple dynamic and measurement models to demonstrate the feasibility

of GPS-based navigation in HEO;

• a 2005 hardware-in-the-loop test campaign by Moreau et al. [55] utilizing an RF

generator, a physical receiver, and the NASA GPS-Enhanced Onboard Naviga-

tion System (GEONS) software to achieve 7 m (3D mean) position accuracy in

HEO;

• a 2010 simulation study by Lorga et al. [63] which incorporated advanced track-

ing algorithms and signals from the Galileo constellation to achieve   20 m (3D

1σ) accuracy in HEO; and
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• a 2010 mathematical study by Li et al. [87] which demonstrated the observability

of the problem of GPS-based navigation in HEO when only one pseudorange is

available for processing.

It is worth noting that these HEO studies focused solely on the Extended Kalman

Filter, firmly establishing the EKF as suitable for this problem. Literature on the

other filters is more sparse:

• a study by Choi et al. [88] found only marginal improvement for UKF-based

navigation in LEO when compared to EKF-based navigation. Specifically, the

3D RMS position errors for CHAMP improved from 12.9 m to 12.1 m, while

those for KOMPSAT-2 improved from 8.7 m to 8.2 m.

• To date, the CKF has not been applied to the problem of GPS-based orbit

determination. However, a study by Pesonen and Piché [89] compared the

CKF, UKF, and EKF for the problem of Earth-bound positioning using GPS

signals fused with signals from mobile phone base stations. In their study, no

single filter was found to consistently outperform the others.

Both of these studies demonstrate that frequent measurement updates tend to mini-

mize the benefits of the UKF and CKF over the simpler EKF. However, the problem

of satellite navigation in HEO presents long periods of measurement outage over the

apogee arc. This will necessitate long period propagation of state and state covari-

ance through the nonlinear equations of motion, a task to which the UKF and CKF

may be well-suited. Thus, there exists an opportunity to examine navigation in HEO

by other methods of nonlinear filtering. This opportunity will be explored further in

Chapter 5.

4.4 Chapter Summary

In this chapter, we have provided an overview of the Kalman filter as an elegant

algorithm for state estimation. We have summarized a variety of methods by which

the Kalman filter can be applied to a nonlinear system; these methods include the

Extended Kalman Filter, the Unscented Kalman Filter, the Cubature Kalman Filter,

and Continous-Discrete Kalman Filters. Finally, we summarized the past applications

of Kalman filters for GPS-based satellite navigation, including flight experience in
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LEO and simulation studies for HEO. With these analytical frameworks established

and demonstrated, we are ready to proceed to our final task: evaluation of nonlinear

filtering algorithms for the autonomous navigation of satellites in highly elliptical

orbit.



Chapter 5

Nonlinear Filter Performance

As discussed in the introduction to this thesis (see Section 1.4), we are completing a

navigation study through simulation. The goal of this study is to design a navigation

solution that matches a known truth orbit when provided with measurements derived

from that orbit. In this chapter, we will assess the accuracy of our navigation solution

by comparing it directly to this known truth.

In this chapter, we will employ our propagation models from Chapter 2, our mea-

surement models from Chapter 3, and our filtering algorithms from Chapter 4. These

models and algorithms will be fused in a MATLAB-based simulation environment to

quantitatively explore the problem of navigation in highly elliptical orbit.

5.1 Simulation Implementation

The bulk of the simulation work was completed in a customized MATLAB environ-

ment. The truth orbit was generated using the high-fidelity propagation capabilities

of Satellite Tool Kit (STK 9.2.0) from Analytical Graphics Inc. The GPS measure-

ments were generated using a purpose-built GPS simulator, the LabPro-4000 from

Navigation Laboratories.

The simulation itself is a six-step process:

1. Simulate a truth orbit using the high fidelity propagator included in AGI STK

9.2.0. The truth orbit is configured with the parameters in Tables 2.8 and 2.9

and initialized with the initial conditions in Table 2.4.

2. Using MATLAB, convert the truth orbit into a position and attitude trajectory

readable by the GPS simulator.

81
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3. Initialize the GPS simulator using the formatted truth orbit trajectory.

4. Perform a GPS simulation1 and save the resulting measurement data products.

5. Convert the data products into pseudorange measurements by calculating SV

visibility and the link budget in MATLAB.

6. Provide the measurements to a MATLAB-based navigation simulation to test

a given filter configuration.

7. Compare the navigation solution to the original STK truth orbit.

The realism of this simulation is enhanced by the use of separate dynamic models

for the truth and navigation solution. We treat the propagator discrepancies as

process noise stemming from differences in physical model fidelity. Great care was

taken to eliminate other discrepancies, including those between physical constants

and reference frames.

5.2 Preamble: Setting up the Simulation

During the simulation setup, a number of design decisions were implemented. Some

were based on the literature while others were bound by the scope of the current

study. These decisions are summarized in Table 5.1 and discussed further in the

following three sections. With these in hand, we are ready to begin the examination

of our navigation solution.

5.2.1 Simulation Configuration

Simulation length: The simulation focuses on one twelve-hour Molniya orbit. Due

to excellent GPS coverage near the Earth, the navigation solution converges to metre-

level accuracy at each perigee regardless of the inaccuracies accumulated over the

previous apogee arc. Thus, we only need to examine the solution’s behaviour as it

traverses the northern arc of our Molniya orbit.

Truth orbit: For our truth model we have configured STK to provide its maxi-

mum level of realism. This includes all primary force models from Table 2.8 and all

secondary force models discussed in Section 2.2.5.

1For details on the simulator operation, see Appendix C.1.
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Filter Algorithm: As discussed in Chapter 4, our baseline algorithm is the Ex-

tended Kalman Filter (EKF). The other methods of nonlinear filtering introduced in

that chapter are discussed in Section 5.5.

5.2.2 Propagator Configuration

Physical model: In Chapter 2 we developed a number of different force models

for our propagator. In our baseline case, we include only the two most significant

forces: geoidal Earth gravity (EGM-96 10�10) and third-body gravity. Our physical

model fpx, tq in (4.6a) therefore takes the form:

fpx, tq � ageoidpx, tq � a3,@px, tq � a3,Kpx, tq (5.1)

where all variables are defined in Table 2.10 and the geoidal acceleration ageoidpx, tq
is calculated using the EGM-96 10 � 10 coefficients on the WGS-84 ellipsoid. The

impact of propagator fidelity will be further examined in Section 5.4.2.

Initial Conditions: To demonstrate filter convergence, the initial conditions for

our state vector x�0 were randomly generated using MATLAB’s randn function. The

standard deviations used for this random initialization can be found in Table 5.1.

The initial state covariance P�
0 is initialized with the corresponding variances along

the main diagonal.

Process noise: A necessary prerequisite for EKF-based state estimation is the

specification of the process noise covariance Qk�1 implemented in the filter. This

value approximately characterizes the actual process noise which results from the

differences between our truth and filter propagators. An iterative method of filter

tuning resulted in the following discrete-time2 process noise covariance matrix:

Qk �

�
�����
Qr � I3 0 0

0 Qv � I3 0

0 0 Qclock

�
����� (5.2)

2The continuous-time filters discussed in Section 5.5 will use the continuous equivalent of (5.2).
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where Qr is our position process noise, Qv is our velocity process noise, Qclock is the

receiver clock process noise, and I3 is a 3� 3 identity matrix. The values for Qr and

Qv are constant3 and can be found in Table 5.1. The definition of Qclock will depend

on the current mode of receiver clock operation:

• If the clock is drifting, the discrete-time equivalent of (3.17) will be used.

• If the clock is being steered, Qclock � rσ2
steers using the filter value for σsteer as

given in Table 3.1.

Forces in Fpx, tq: We recall from (4.7a) that our required Jacobian matrix Fpx, tq
is reliant on the physical model fpx, tq. We should therefore have a term in Fpx, tq
corresponding to each term in (5.1). However, for this orbital regime a simplified

Jacobian can be implemented without loss of filter accuracy. This Jacobian includes

only two factors: the two-body acceleration (2.2) and the current mode of receiver

clock operation:

Fpx, tq �

�
�����

0 I3 0

3µC
r5

rrT 0 0

0 0 Fclock

�
����� (5.3)

where µC is the gravitational parameter of the Earth from Table 2.7, r is the position

vector of our satellite, and Fclock � Fsteer or Fdrift as defined in (5.4). A more complex

Jacobian accounting for the Earth oblateness4 was examined through simulation but

not implemented as it was found to have no measurable impact on the solution.

The receiver clock Jacobian will depend on the current mode of receiver clock

operation. In accordance with (3.15) and (3.16), we derive:

Fsteerpx, tq �
�
�τ�1

s

�
Fdriftpx, tq �

�
�� 0 1

0 0

�
�� (5.4)

where τs is the coloured-noise decay constant as defined in Table 3.1.

3Note that these values are specific to our 30 s measurement interval.
4More commonly referred to as the J2 effect, this was achieved by modelling a 2 � 0 EGM-96

gravity field.
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5.2.3 Measurement Configuration

Measurement model: In Chapter 3 we presented truth and filter models for the

GPS pseudorange measurement. Our measurement model hpx, tq in (4.6b) therefore

takes the form:

hpx, tq � h∆
GPSpx, tq � hRclkpx, tq (5.5)

where all variables are defined in Table 3.4.

Measurement model Jacobian: We recall from (4.7b) that our required Ja-

cobian matrix Hpx, tq is reliant on the measurement model hpx, tq. Based on our

definition in (5.5), we define:

Hpx, tq � coli

��
r� r∆

SV

|r� r∆
SV |


T
0 0 0 Hclock

�
(5.6)

where r is the position vector of our satellite, r∆
SV are the perturbed SV ephemerides,

and Hclock � Hsteer or Hdrift as defined in (5.7). The latter equation is given by:

Hsteerpx, tq � r c s Hdriftpx, tq � r c 0 s (5.7)

where c is once again the speed of light.

Measurement frequency: Current spaceborne GPS receivers can provide raw

pseudoranges at a freqency of 1 Hz – see, for example, the documented on-orbit per-

formance of the Astrium MosaicGNSS receiver [90]. For this study, a conservative

update interval of 30 s was selected to ensure the robustness of the navigation solu-

tion. Such an interval was found to be sufficient for LEO by Montenbruck et al. [35]

in their analysis for filter-based navigation of PROBA-2.

GPS receiver channels: GPS receivers have a hardware-imposed limit on the

number of GPS satellites they can track at a given time. We again used the example of

the Astrium MoisaicGNSS receiver [90] and include a maximum of eight pseudoranges

in our navigation solution.

GPS receiver antenna field-of-view: In this study, a nadir-pointing attitude

was assumed over our entire HEO orbit. This allowed us to consider a nadir-pointing
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antenna and a zenith-pointing antenna for direct comparison with the results of Potti

et al. [60]. Both antennae were assumed to have a full hemisphere of visibility (2π

steradians) with a gain pattern given by Figure 3.2. The impact of antenna position

is examined in Section 5.4.1.

Measurement noise: As with the process noise, we must provide our filter with

the measurement noise covariance Rk which approximately characterizes the differ-

ence between our truth and filter measurement models. As discussed throughout

Chapter 3, we expect our GPS pseudorange measurements to be accurate to within

tens of metres. An iterative method of filter tuning resulted in the following mea-

surement noise covariance matrix:

Rk �
�
RGPS � Ik

�
(5.8)

where RGPS � p10 mq2 � Riono contains the tuned parameter plus an estimate of the

ionospheric measurement noise5 and Ik is an identity matrix with dimensions matching

the number of currently locked satellites (see Section 3.6).

5.3 Baseline EKF Analysis

Following from the discussion in the previous section, a baseline set of simulations was

conducted to verify the navigation solution. Parameters for these simulations were set

in accordance with Table 5.1 according to the rationale given throughout Section 5.2.

The results of a sample simulation can be seen in Figure 5.1 to Figure 5.6 inclusive.

5.3.1 What do these figures mean?

Figure 5.1 to Figure 5.4 contain the time histories of the state errors and state uncer-

taincies. The former is represented by the solid lines, which trace out the difference

px̂k � xkq. The latter is represented by the dashed lines, which define the 3σ bounds.

5In line with the discussion in Section 3.4.2, Riono is the square of the ith component of
p1 � IF q � ht

ionopx, tq
where IF is the average ionosphere factor of 0.6. In effect, the filter assumes that the ionospheric
model removes 60% of the ionospheric effect, when in reality it removes between 40–80%.
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Table 5.1: Baseline Simulation Configuration

Simulation Settings

simulation length 12 h

truth model full STK force model

filter algorithm* EKF

Propagator Settings

propagator force models* EGM-96 (10 � 10)

luni-solar

Jacobian matrix Fpx, tq two-body (5.3)

process noise covariance Qk Qr � 1 � 10�7 km2

Qv � 1 � 10�13 km2�s�2

Qclock per (5.2)

initial conditions x�0 , P�
0 r0 � Np0, 100 mq

v0 � Np0, 1 m�s�1q
b0 � Np0, 1 µsq
d0 � Np0, 1 µs�s�1q

Measurement Settings

measurement interval 30 s

measurement noise covariance Rk RGPS � p10 mq2
number of GPS antennae* 2 (nadir & zenith)

number of GPS channels 8

*considered for further analysis.

These bounds rely on the definition of our standard deviation vector:

σk � coli
�?

pii,k
�

(5.9)

where pii,k is the ith diagonal component of Pk and coli denotes a column vector

where the ith row is given inside the brackets. The dashed lines therefore represent

our positive and negative 3σ bounds within which our solution should remain the

majority of the time.

Figure 5.5 is a layered figure that combines position error data from Figure 5.1
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with satellite visibility data from Figure 3.3. The vertical bars indicate the number

of GPS SVs being processed by the navigation solution. A white bar corresponds to

zero SVs, a black bar indicates four or more, and the varying shades of grey cover

the intermediate values.

Finally, Figure 5.6 contains a quantification of filter convergence. In this figure,

we have plotted the 2-norm of the residuals, the difference
�
yk � hpx̂�k , tkq

�
used in

the Kalman update. This parameter provides insight to the degree of accuracy with

which the filter is estimating the measurements it is receiving.

Note on the choice of reference frame: The position and velocity errors

are presented in the along/across/radial reference frame. This frame is well-suited to

highlight the impact of changes to the navigation solution and is the frame-of-reference

for the STDP accuracy requirements (see Section 1.3.3). Following the notation of

Vallado [26], this frame is formally defined as:

r̂ � r

|r| (5.10)

ŝ � ŵ � r̂ (5.11)

ŵ � r� v

|r||v| (5.12)

where we define:

r̂ radial unit vector, unitless

ŝ along-track unit vector, unitless

ŵ across-track unit vector, unitless

r instantaneous ECI position6, km

v instantaneous ECI velocity, km�s�1

Note that by these definitions, ŵ is normal to the orbit plane and ŝ points in the

same general direction as the velocity vector (they are co-aligned only under certain

circumstances). Using these definitions, we can define a rotation matrix to transform
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Figure 5.1: Baseline simulation, position error, along/across/radial frame*.
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Figure 5.2: Baseline simulation, velocity error, along/across/radial frame*.

(*for a discussion on the along/across/radial reference frame, see Note above.)
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Figure 5.3: Baseline simulation, receiver clock bias error and receiver clock mode.
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Figure 5.4: Baseline simulation, receiver clock drift error and receiver clock mode.
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Figure 5.5: Baseline simulation, position error and locked GPS satellites.
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our position and velocity errors and their associated covariance matrices into the

desired frame.

5.3.2 Baseline EKF Performance

Examining the results of our baseline simulation in Figures 5.1 to 5.6, we can see that

the EKF is working as expected; the solution error is constrained by the 3σ bounds

and remains converged throughout the period of simulation. Beyond this general

conclusion, each plot contains specific details about our navigation solution.

Position and velocity: Bearing in mind the time period of interest for our sim-

ulation (twelve hours from perigee to perigee), we note in Figure 5.1 and Figure 5.2

a steady increase in uncertainty as the satellite traverses the apogee arc of our HEO

orbit. This is due to the “dead reckoning” of our solution through this arc of low

GPS coverage. The gradual return of coverage from the eighth hour onward is re-

flected by a corresponding reduction in solution uncertainty, with position accuracy

fully converged by the time perigee is reached. As noted by the above-plot statistics,

the solution is accurate to tens of metres in position and millimetres per second in

velocity.

Receiver clock bias and drift: Figure 5.3 and Figure 5.4 highlight the per-

formance of our receiver clock error as a function of time. Both plots include a

grey/white colour scheme to indicate when the receiver clock is drifting (white) and

when it is being steered (grey).

Looking at the bias, we note that it converges at perigee with significant deviation

only occuring during GPS signal outage. This fact is mirrored in the drift plot, where

we see drift error and uncertainty sharply increase during GPS signal outage. It is

worth noting that the solution does not estimate the drift around perigee - as detailed

in Section 3.5, drift is only estimated during times when the GPS clock is not being

steered.

In Figure 5.3, we further note that our receiver clock bias has a maximum error

of 2100 ns and an RMS error of 250 ns; the latter translates to a large pseudorange

error of 75 m. However, these bias error statistics are computed using data from the

6Earth Centred Inertial reference frame; see Appendix A.2 for a discussion on reference frames
and coordinate transformations.
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entire orbit. A more careful calculation of these statistics ignores the clock bias error

during total GPS outage as this freely-drifting bias has no impact on the navigation

solution. If these periods of total outage are removed from the statistic calculation,

we obtain a maximum clock bias of 410 ns and an RMS value of 160 ns, translating

to 48 m of pseudorange inaccuracy.

Further analysis: The remaining two figures offer additional insight on the per-

formance of our navigation solution. In Figure 5.5, we can see that the sharp changes

in our navigation solution correspond directly to the acquisition of an additional GPS

signal. As each GPS signal has a unique set of ephemeris and clock errors, the mini-

mum variance state estimate will change significantly with the acquisition or loss of

a GPS satellite.

The final baseline plot, Figure 5.6, demonstrates that upon signal acquisition, the

EKF quickly forces the residual down to the magnitude of the measurement error

itself. This confirms the EKF as well-suited for this application.

5.4 Perturbing the Baseline EKF

Having established a nominal performance for our EKF-based navigation solution,

we will examine the impact of various options available to optimize the performance

of our filter. We will also examine the inclusion of an additional measurement type,

passive ranging, to determine its ability to improve our navigation solution.

5.4.1 Effect of Receiver Antenna Positioning

As noted in Section 5.2.3, this study assumes a nadir-pointing spacecraft attitude. In

our SV visibility analysis (see Section 3.6.2) we considered two distinct GPS receiver

antenna positions on the spacecraft: a nadir-pointing antenna and a zenith-pointing

antenna. The baseline case included both antennas. To examine the impact of an-

tenna failure, a simulation was completed with each antenna acting alone. The results

can be seen in Figure 5.7 and Figure 5.8.

The zenith-pointing antenna performs as expected; with no signals received during

the apogee arc, the solution merely propagates until GPS signals are restored near

perigee. More interesting is the nadir-pointing case, where GPS coverage at perigee

is sufficient for an accurate navigation solution (see Note below). However, gaps early
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in the orbit cause the solution to diverge more rapidly than the two-antenna case.

We are therefore comfortable confirming the need for two GPS antennae on our HEO

spacecraft.

An additional benefit of this analysis is the demonstration of propagator accuracy

in the absence of measurements through the apogee arc. This validates the work done

in Chapter 2 and highlights the filter’s ability to reconverge even after multiple hours

without a measurement update.

Note on nadir SV visibility: It is at first surprising to see such good GPS

signal reception by our nadir-pointing antenna at perigee. However, geometrical

calculations show that the Earth-blockage at our perigee altitude of 500 km is only

66.4%, allowing a full third of GPS signals to reach our nadir-pointing antenna.

This blockage decreases to 50% at approximately 1100 km altitude (occurring 8 min

after perigee) and 22.4% when our spacecraft leaves GPS main lobe coverage at

approximately 3900 km altitude (occurring 21 min after perigee). Thus, even for the

nadir-pointing antenna, Earth-blockage rapidly becomes a minor source of GPS signal

blockage.
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Figure 5.7: Zenith-pointing antenna, position error and locked GPS satellites.
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Figure 5.8: Nadir-pointing antenna, position error and locked GPS satellites.
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5.4.2 Effect of EKF Propagator Fidelity

Computational efficiency is a necessity for autonomous navigation solutions acting

in real-time. With this motivation, two additional propagator configurations were

examined:

• a simple propagator, consisting only of the oblate Earth gravity model (i.e.

the J2 effect) and the luni-solar perturbation;

• a complex propagator, consisting of a 10�10 EGM-96 gravity model, luni-solar

perturbations, atmospheric drag, and solar radiation pressure.

These propagators were simulated under identical initial conditions and compared to

the baseline case documented in Figure 5.1.

The results for the simple propagator can be seen in Figure 5.9. With a filter

runtime of 40.3 s (needed for processing measurements and propagating the solution

over the entire orbit) it nearly halves the 79.8 s performance of the baseline case for

our 12 h orbit. However, the radial and along-track errors are noticeably larger.

In contrast, the complex propagator as documented in Figure 5.10 improves our

navigation error slightly with a corresponding slight increase in computational cost

(83.8 s). It is worth noting that this solution is reliant on user-defined coefficients

for drag and solar radiation pressure (see Table 2.7); these coefficients will vary from

application to application.

We can therefore confirm the suitability of the baseline propagator configuration

as an appropriate balance between accuracy and computational load. Specifically,

we have demonstrated that accurate navigation solutions can be achieved despite the

lack of models for atmospheric drag and solar radiation pressure. This design decision

matches that implemented by Berthias et al. [91] for their DIOGENE algorithm, an

EKF-based navigation solution which later flew on a number of satellites including

PROBA-2 [35].
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Figure 5.9: Simple propagator, position error.
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Figure 5.10: Complex propagator, position error.
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5.4.3 Effect of Sidelobes

In Section 3.6.3, we introduced the concept of GPS antenna sidelobes. It is anticipated

that the inclusion of sidelobes in the GPS transmitter pattern will increase the number

of measurements available for navigation. We therefore completed two runs from

identical initial conditions; Figure 5.11 uses the gain pattern from Figure 3.2 (sidelobes

not included), while Figure 5.12 uses the pattern from Figure 3.6 (sidelobes included).

Comparing the two figures, we notice that the inclusion of sidelobes increases the

number of GPS signals available for navigation during the first part of the orbit. This

delays the divergence of the navigation solution, resulting in the improvement of the

3D RMS position error from 55.6 m to 43.6 m.

However, it is worh noting that the inclusion of sidelobes does not appear to have

an impact on GPS visibility during the high apogee arc. This is due to the fact that

our nadir-pointing antenna is focused squarely on the centre of the Earth - a non-ideal

configuration for the reception of sidelobe signals. An attitude configuration more

friendly to these signals would be required to better assess their ability to impact the

navigation solution.
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Figure 5.11: Sidelobes OFF, position error and locked GPS satellites.
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Figure 5.12: Sidelobes ON, position error and locked GPS satellites.



100

5.4.4 Effect of Receiver Clock Error

To further explore the behaviour of this navigation solution, a simulation was per-

formed where the receiver clock was assumed error-free. This was done to highlight

the effect of receiver clock error on the navigation solution. The results of this simu-

lation can be seen in Figure 5.13 and Figure 5.14.

We notice a remarkable improvement in this simulation. RMS position errors

drop to less than twenty metres, while no coordinate reaches an error exceeding sixty

metres. The solution is well-behaved; error grows during periods of propagation and

shrinks (sometimes with great speed) as new measurements are processed. We again

observe the transient divergence of the solution when new SVs are acquired (e.g.,

just before the 8 h mark) – as before, this results from the incorporation of uniquely

biased measurements into the navigation solution.

Most interesting is the behaviour of the radial coordinate. Previously the most

error-prone, it has an RMS error of a mere 4.4 m – a full order of magnitude improve-

ment! This behaviour sheds light on the behaviour exhibited by radial position error

during the baseline simulation. When the satellite is high on the apogee arc, it is only

receiving signals from GPS SVs on the far side of the Earth. This line-of-sight is very

nearly aligned with the Earth-centred radial direction from the along-across-radial

reference frame. Thus, pseudoranges on the apogee arc are primarily functions of two

factors: the radial distance plus the (scaled) receiver clock bias.

If the filter is underestimating one of these parameters, it will respond by over-

estimating the other one. A close examination of Figure 5.1 and Figure 5.3 between

the eighth and tenth hour reveals that receiver clock bias and radial position error

are indeed negatively correlated.

Thus, we are finally able to reconcile the residuals in Figure 5.6 (where residuals

were seen to be well below the twenty metre threshold) and the hundred-plus metre

error in radial position between the eighth and tenth hour. The explanation lies in the

receiver clock error and its maximal error of 410 ns (approx. 120 m). This behaviour

will require further analysis.
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Figure 5.13: Receiver Clock Perfect, position error.
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Figure 5.14: Receiver Clock Perfect, position error and locked GPS satellites.
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5.4.5 Inclusion of Passive Ranging

In Section 3.7, we introduced an implementation of ranging suited to our goal of

autonomous navigation. This passive ranging scenario assumes that two beacons have

been installed at existing Canadian Space Agency ground stations. These beacons

are specified to broadcast a signal appropriate for pseudorange measurements using

the same operating characteristics as a GPS SV transmitter with sidelobes included

(see Figure 3.6). To generate measurements for our simulation, we will employ the

geometric pseudorange per (3.2) corrupted with a zero-mean white noise signal with

a standard deviation of σrge � 5 m. This value corresponds to the approximate level

of pseudorange error that remains after the errors listed in Section 3.7 have been

accounted for (cf. United States Coast Guard [92], Table 3-1). For consistent fusion

with the existing GPS measurements, we will adopt the same measurement interval

of 30 s.

Testing the range measurements: In the previous section, we demonstrated

that inaccuracies in the receiver clock correction are responsible for a significant

portion of the position error in our navigation solution. Thus, to test the ranging

system we ignored receiver clock error and set Rrge � p5 mq2, matching the white noise

with which the range measurements are corrupted. The results of that simulation can

be seen in Figure 5.15.

Comparing this simulation with Figure 5.14, our previous receiver-clock-perfect

simulation, we notice a significant improvement in all three components of position

error. The continuous measurement coverage softens the transients that occur when

a new GPS signal is acquired. The solution, however, is slightly less smooth; this

is expected as our ranging measurements are corrupted by a high-frequency white

noise while our GPS measurements are corrupted by the slowly-varying (and more

realistic) biases detailed in Section 3.4.

Implementing the range measurements: Having verified the impact of our

range measurements in an idealized scenario, we included receiver clock error per

(3.12) and retained our measurement noise of Rrge � p5 mq2. The results of this

simulation can be seen in Figure 5.16.

The results of this simulation are somewhat counter-intuitive. Comparing it to
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Figure 5.15: Navigation using passive ranging and GPS, receiver clock perfect.
Beacon visibility indicated by the purple line at the bottom of the plot. The
colour-code for the locked SVs is defined as before (cf. Figure 5.14).

our baseline simulation from Section 5.3.2, we note that despite the inclusion of

new and accurate measurements, the accuracy of our navigation solution has not

significantly improved. In particular, the radial coordinate is consistently under-

estimated throughout the apogee arc. A comparison with the receiver clock error

(not shown) confirms the same relationship we observed in Section 5.4.4. Namely,

the filter compensates an under-estimation of the radial coordinate with an over-

estimation of receiver clock bias. This error is magnified for the ground beacons

because their line-of-sight to our receiver is very nearly aligned with the receiver’s

radial coordinate, reducing the filter’s ability to distinguish between the two states.

Thus, while the residuals remain small and all states remain within their respective

variances, the solution is not optimal.

In an attempt to improve the solution, we increased the value of Rrge used in the

filter while maintaining the measurement noise of σrge � 5 m. This forces the filter

to lessen its dependence on the ranging measurements. Through a tuning process, a

value of Rrge � p50 mq2 was found to be satisfactory. The performance of the filter

with this value can be seen in Figure 5.17. Comparing its 3D RMS error of 29.1 m

with previous simulations, we see a significant improvement over both the baseline

simulation (58.9 m) and the pre-tuning beacon simulation (54.3 m). Thus, we have

verified the inclusion of passive ranging as a means to improve our navigation solution.
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Figure 5.16: Navigation using passive ranging and GPS, receiver clock error in-
cluded, Rrge � p5 mq2.
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Figure 5.17: Navigation using passive ranging and GPS, receiver clock error in-
cluded, Rrge � p50 mq2.
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5.5 Other Nonlinear Filters

As noted in Section 5.2, the Extended Kalman Filter (EKF) is the default filter for

our state estimator. Thus, it has formed the backbone of our analysis so far. In Sec-

tion 4.2, we introduced a quartet of alternatives to the EKF: the Unscented Kalman

Filter, the Cubature Kalman Filter, the Continuous-Discrete Unscented Kalman Fil-

ter, and the Continuous-Discrete Cubature Kalman Filter. We now turn our attention

to their implementation and evaluate their performance against the EKF.

For proper implementation of the Unscented Kalman Filter, a second round of fil-

ter tuning is required. In Section 4.2.2, we noted that the scaled unscented transform

carries with it a trio of user-settable parameters: α, κ, and β. As outlined by Wan

and van der Merwe [93]:

• α controls the spread of the sigma points around our state estimate x̂; it is

usually set to a small positive value.

• κ is a secondary scaling parameter; it is typically set to 0 or 3 � n, where n is

the number of states in x̂.

• β allows us to emphasize or de-emphasize the weighting of the central covari-

ance; it is typically set to 2 for a Gaussian distribution.

With these directives in mind, a tuning process led to the values seen in Table 5.2.

Table 5.2: Tuning parameters for the Unscented Kalman Filter

α 1 � 10�2

κ -5

β 2

The results of our tuned UKF simulation can be seen in Figure 5.18. In this figure,

we can qualitatively see that the trajectory follows a similar pattern to that in our

previous EKF-based simulations (see, e.g., Figure 5.5). The 3σ covariance bounds

(not shown) behave likewise.

In a similar fashion, we applied each of the five filters to the same measurement

dataset; their quantitative performance can be found in Table 5.3. Note that these
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Figure 5.18: Unscented Kalman Filter, position error and locked GPS satellites
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Figure 5.19: Continuous-Discrete Unscented Kalman Filter, position error and
locked GPS satellites
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Table 5.3: Summary of Results for Nonlinear Filters

V
E

L
O

C
IT

Y
(m

m
�s�

1
)

P
O

S
IT

IO
N

(m
)

Filter Radial Along Across 3D RMS Computational
algorithm error error error error cost, relative

EKF 34.9 22.4 14.3 43.9 1

UKF 35.2 22.7 14.4 44.3 10

CKF 35.2 22.7 14.4 44.3 10

CDUKF 43.8 19.0 20.1 51.8 15

CDCKF 34.6 22.4 14.2 43.6 15

EKF 6.12 3.69 3.07 7.78 1

UKF 6.08 3.70 3.08 7.76 10

CKF 6.08 3.70 3.08 7.76 10

CDUKF 7.51 3.95 3.82 9.31 15

CDCKF 6.15 3.68 3.05 7.79 15

values cannot be compared directly to the values from the baseline case in Section 5.3.2

as they were conducted under different clock and ionospheric conditions (both are

driven by random values).

Examining this table, we note that the accuracy of four of the five filters match

within a metre. The outlier, the CDUKF, is plotted in Figure 5.19 for comparison.

Though this trajectory is slightly different than the other four (which are indistin-

guishable from Figure 5.18), it retains a similar level of accuracy and is well within

the operational requirements of our motivating PCW mission. The CDUKF result

also serves to highlight that the same tuning for a discrete and continuous filter does

not necessarily produce the same result.

The rightmost column of the table gives an indication of the computational time

required for each filter when applied to our navigation problem. Exact computation

times varied from run to run, but in general EKF analyses were executed in a tenth to

fifteenth of the time of the other filters. This was due to two factors. First, the EKF

algorithm requires only a single propagation of the nonlinear dynamics (cf. (4.8a)),

while the UKF and CKF propagate these dynamics (including the computationally
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intensive gravity model) for each sigma point (cf. (4.17c)). Second, as discussed in

Section 5.2.2 a highly simplified Jacobian can be used in this application, further

simplifying the EKF algorithm.

We recall from Section 4.3 that the UKF was not found to provide a significant

improvement when implemented for GPS-based navigation in LEO. Further, we re-

call that the UKF and CKF were not shown to significantly improve on the EKF

for ground-based position determination. Based on the results in Table 5.3, it ap-

pears that these conclusions hold for GPS-based navigation in HEO. Combining this

conclusion with that of the rightmost column, we conclude that for the problem of

GPS-based position determination in HEO, the Extended Kalman Filter is the com-

putationally efficient and accurate solution.

5.6 Chapter Summary

In this chapter, we have summarized the verification of our GPS-based navigation

solution for a satellite on highly elliptical orbit. First, we outlined our method of

simulation and detailed our simulation configuration, including specific points about

the propagator and measurement setup. Next, we defined and executed a baseline

algorithm, which achieved a navigation accuracy within the requirements set by this

study. Finally, we examined a variety of different filter configurations in an effort to

optimize the navigation solution; these configurations are summarized in Table 5.4.

Having completed these analyses, we have demonstrated the ability of an EKF-

based state estimator to navigate a spacecraft on highly elliptical orbit. We have also

demonstrated that for this particular problem, estimators based on the UKF and

CKF do not provide any additional accuracy despite their ability to better preserve

system nonlinearities.
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Table 5.4: Filter Design: Decisions and Observations

Design Feature Options Decision

receiver antenna nadir-pointing
zenith-pointing both
both

filter propagator simple
baseline baseline
complex

filter EKF
UKF
CKF EKF
CDUKF
CDCKF

Design Feature Observation*

GPS sidelobes improve the navigation solution

receiver clock error most significant navigation error

passive ranging improve the navigation solution

*further conclusions cannot be drawn without more detailed study.



Chapter 6

Conclusions

In this study, we have examined methods of nonlinear filtering for the autonomous

navigation of spacecraft in highly elliptical orbits. This study was motivated by

the upcoming Polar Communication and Weather mission, a Canadian Space Agency

satellite slated for launch into a Molniya orbit. The satellite navigation requirement is

specified at 150 m (3σ) in each component of an along/across/radial reference frame.

Bearing this requirement in mind, we endeavoured to determine the accuracy to which

such navigation can be achieved.

Defining our spacecraft state as its position and velocity, we first outlined the

physical force models required to propagate this state forward in time. Next, we

introduced measurements as a means of observing spacecraft state and presented

detailed models of measurements that would be available to a spacecraft in HEO.

We then summarized a number of nonlinear filtering algorithms designed to combine

state predictions and measurements to produce a state estimate. Finally, we designed

and executed a simulation to test these filter algorithms.

Our primary filtering algorithm, the Extended Kalman Filter, achieved a posi-

tional accuracy of 58.9 m (3D RMS) over a single Molniya orbit. Over this time, no

single component of error exceeded 130 m; this satisfies the performance specifica-

tion for our reference mission. Other nonlinear filters were not found to noticeably

improve on this performance.

In the remainder of this chapter, we will present and discuss detailed conclusions,

specify the contributions of this thesis, and outline possibilities for future work in this

area of study.
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6.1 Conclusions and Discussion

Orbit determination using GPS pseudoranges in HEO is “not nonlinear

enough” to merit complex nonlinear filters. As noted above, our filtering

simulation examined the performance of other nonlinear filters; these included the

Unscented Kalman Filter, the Cubature Kalman Filter, and their continuous-discrete

counterparts. These filters have been demonstrated to outperform the EKF for highly

nonlinear systems and for long measurement outages. Nominally, the problem of or-

bit determination in HEO contains both such situations. However, these complex

filters were not found to improve the navigation solution. When the dynamics and

measurements are at their most nonlinear (at perigee due to strong geoidal gravity

and rapidly changing geometry) GPS coverage is excellent, allowing the measurement

update to quickly correct any propagation errors. When the measurements are in-

frequent (at apogee), the dynamics and measurements have limited nonlinearities;

specifically,the Earth gravity approaches a point source and the pseudorange mea-

surement approaches a linear combination of the radial coordinate and the receiver

clock bias. Thus, for the measurements and sample periods considered in this thesis,

a simple EKF with simple force models is sufficient.

When only one or two GPS pseudoranges are being processed, the nav-

igation error is constrained but is noticeably worse than the error when

three or more pseudoranges are available. In this study, great care was taken

to implement realistic measurement errors for the GPS pseudorange signals. These

errors included biased components (i.e., GPS SV ephemeris errors), slowly varying

components (i.e., ionospheric errors), and random components (i.e., receiver clock

noise). The tuned filter is able to reduce the residuals when one or two such measure-

ments are processed, constraining the state measurement error but with a noticeably

larger bound than the case when three or more pseudoranges are available. Thus, we

have gained insight into the behaviour of a pseudorange-driven state estimator when

GPS coverage is poor.

Receiver clock bias is a major source of error and needs to be treated with

great care. At present, receiver clocks for spaceborne GPS satellites are prone to

inaccuracy and require good GPS signal coverage to correct any biases that develop

over time. Our HEO spacecraft is not able to fulfill this requirement and so must



112

estimate the receiver clock bias using sporadic GPS signals which are themselves

corrupted by this bias. In this study, a dual-mode receiver clock model was shown

to constrain receiver clock bias with just a single measurement. However, it has

difficulty differentiating radial position error and receiver clock bias error as these

states have similar impacts on the measurements estimated by the filter. We have

therefore highlighted the need to examine the detailed behaviour of receiver clock bias

in spaceborne receivers and the need for more refined techniques of bias estimation.

Passive ranging is an appealing option for autonomous satellite navigation

in HEO. In this thesis, we introduced the concept of passive ranging as a means of

providing additional autonomous measurements to our spacecraft. Briefly, this con-

cept would require a pair of beacons set up in the Northern Hemisphere broadcasting

a signal that is operationally similar to that broadcast by the GPS constellation. An

exploratory study of this concept showed a 50% reduction in the position error of our

navigation solution over the entire Molniya orbit.

More GPS signals result in a better solution. While this may seem to be

a tautology, this study demonstrated that additional GPS signals unequivocally im-

proved the navigation solution, particularly over the apogee arc where signal coverage

is sparse. These additional signals can be facilitated by the inclusion of additional

GPS antennae (i.e., two is better than one) and by using receivers and antennae

capable of acquiring GPS sidelobe signals. Future missions in HEO would do well

to prioritize the acquisition of GPS signals, including the optimization of antenna

position for a mission-specific attitude profile.

6.2 Contributions

Based on the above, we can state the following specific contributions:

• well-founded GPS pseudorange error modelling to a high fidelity, including

effects (GPS SV clock errors, GPS SV ephemeris errors) not previously included

in HEO navigation studies;

• a thorough filter and propagator comparison which demonstrates that a

simple filter and propagator are sufficient for GPS-based navigation in HEO;
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• the demonstrated positive impact of sidelobes and multiple GPS antennae

as means to acquire additional GPS signals;

• the significant impact of receiver clock bias error on the navigation solu-

tion and the filter’s difficulty in differentiating between this error and a radial

position error; and

• the introduction of passive ranging as a beneficial alternative measurement

for HEO navigation.

6.3 Future Work

The focus of this study, autonomous navigation, was a driving factor behind the

measurements and algorithms chosen. However, the constraint of flight code and

on-orbit processing power was not considered. Future studies could further examine

the outlined algorithms and determine their suitability for flight use in HEO.

Another option for future work is the use of an augmented state vector which

includes empirical accelerations, force model parameters (i.e, drag coefficient and

cross-section), and channel-specific GPS biases. The former would improve the propa-

gator performance while the latter would act to counter the convergence issue detailed

above. As such a state vector would increase computing requirements, additional

study would be required to ensure the algorithm is appropriate for flight.

While this study focused primarily on orbit determination based on GPS pseudor-

ange, there exist other measurements which have potential to improve the solution.

Chief among these are the GPS carrier phase measurement (suitable for the elimina-

tion of the ionosphere pseudorange error) and accelerometer measurements (suitable

for state estimation during thrusting events). In addition, certain LEO navigation

technologies (i.e., the DORIS ground beacon system and the GLONASS satellite

navigation system) could be verified for HEO through simulation or demonstration.

As noted above, the physical forces that define a Molniya orbit simplify as the

orbital altitude increases; the Earth begins to resemble a point gravitational source

and atmospheric drag becomes negligible. An altitude-dependent process noise

model could be developed to ensure that the appropriate level of process noise is

added to our filtering algorithm at all points in the orbit.

Finally, this study explicitly focused on the Molniya orbit. Further study could
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extend these techniques to other HEOs, including the Tundra orbit and the Triple

Apogee orbit.



115

References

[1] National Geographic Atlas of the World. Washington, DC: National Geographic

Society, 8th edition, 2004.

[2] Statistics Canada. Canada’s total population estimates, 2013. The Daily, com-

ponent of Statistics Canada catalogue no. 11-001-X, 26 Sept 2013.

[3] Edward Struzik. Alert. In The Canadian Enyclopedia. Historica Foundation,

2013.

[4] Harry Kowalik. Telesat: The first domestic satellite system. In D.K. Sachdev,

editor, Success Stories in Satellite Systems, page 93. Reston, VA: American

Institute of Aeronautics and Astronautics, 2009.

[5] Environment Canada. Satellite images and animation, accessed 20 Oct 2013.

URL http://weather.gc.ca/satellite/index_e.html.

[6] Canada. Governor General. Seizing Canada’s moment: prosperity and oppor-

tunity in an uncertain world: speech from the Throne, October 16, 2013. Elec-

tronic serial in PDF format: http://www.speech.gc.ca.

[7] Canada. Canadian Space Agency. Polar Communication and Weather mis-

sion (PCW), accessed 20 Oct 2013. URL http://www.asc-csa.gc.ca/eng/

satellites/pcw/.

[8] Alexander P. Trishchenko and Louis Garand. Canadian Polar Communica-

tion and Weather (PCW) satellite system: new capabilities for mapping Arctic

snow and ice dynamics from highly elliptical orbit. 6th EARSeL Workshop:

Cryosphere, Hydrology & Climate Interactions, University of Bern, Switzer-

land, 7 Feb 2011.

[9] BBC News. Warming ‘opens Northwest Passage’, 14 Sept 2007. URL http:

//news.bbc.co.uk/2/hi/6995999.stm.

[10] Anton H.J. de Ruiter, Christopher J. Damaren, and James R. Forbes. Spacecraft

Dynamics and Control. West Sussex: John Wiley & Sons, Ltd., 2013.

[11] Michael J. Bruno and Henry J. Pernicka. Tundra constellation design and

stationkeeping. Journal of Spacecraft and Rockets, 42(5):902–912, 2005.

http://weather.gc.ca/satellite/index_e.html
http://www.speech.gc.ca
http://www.asc-csa.gc.ca/eng/satellites/pcw/
http://www.asc-csa.gc.ca/eng/satellites/pcw/
http://news.bbc.co.uk/2/hi/6995999.stm
http://news.bbc.co.uk/2/hi/6995999.stm


116

[12] Alexander P. Trishchenko, Louis Garand, and Larisa D. Trichtchenko. Three-

apogee 16-h highly elliptical orbit as optimal choice for continuous meteorolog-

ical imaging of polar regions. Journal of Atmospheric and Oceanic Technology,

28:1407–1422, 2011.

[13] David G. Hoag. Apollo navigation, guidance, and control systems: a progress

report. Technical report, Cambridge, MA: MIT Instrumentation Library, April

1969.

[14] Martin Unwin and Martin Sweeting. A practical demonstration of low cost

autonomous orbit determination using GPS. In Proceedings of the 8th Interna-

tional Technical Meeting of the Satellite Division of the Institutite of Navigation,

pages 579–587, Sept 1995.

[15] Erin Kahr, Oliver Montenbruck, Kyle O’Keefe, Susan Skone, Jakub Urbanek,

Laura Bradbury, and Pat Fenton. GPS tracking on a nanosatellite – the CanX-2

flight experience. In Proceedings of the 8th International ESA Conference on

GNC Systems, Karlovy Vary, June 2011.

[16] Michael L. Thrall. Orbit Determinationa of Highly Eccentric Orbits using a

RAVEN Telescope. Master’s thesis, Naval Postgraduate School, 2005.

[17] Dipak K. Srinivasan, David Artis, Ben Baker, Robert Stilwell, and Robert

Wallis. RF communications subsystem for the Radiation Belt Storm Probes

mission. Acta Astronautica, 65(11–12):1639–1649, 2009. doi: http://dx.doi.

org/10.1016/j.actaastro.2009.04.018.

[18] Jeff A. Estefan. Precise orbit determination of high-earth elliptical orbiters using

differenced doppler and ranging measurements. In IEEE Position Location and

Navigation Symposium 1992, pages 105–112, 1992.

[19] George Davis, Michael Moreau, Russell Carpenter, and Frank Bauer. GPS-

based navigation and orbit determination for the AMSAT AO-40 satellite. In

Proceedings of the AIAA Guidance, Navigation, and Control Conference, Mon-

terey, CA, Aug 2002.

[20] James D. Kronman. Experience using GPS for orbit determination of a geosyn-

chronous satellite. In Proceedings of ION GPS 2000, pages 1622–1626, Salt

Lake City, UT, Sept 2000.



117

[21] ESA Space Engineering. Far-out space navigation from sideways satnav signals,

accessed 05 April 2014. URL http://http://www.esa.int/Our_Activities/

Space_Engineering/Far-out_space_navigation_from_sideways_satnav_

signals.

[22] Rudolf E. Kalman. A new approach to linear filtering and prediction problems.

Transactions of the ASME, Journal of Basic Engineering, 82(D):35–45, 1960.
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Appendix A

Orbital Elements, Reference Frames, &

Time Dilution of Precision

A.1 The Classical Orbital Elements

In Table 2.4, we defined the orbital initial conditions for this study using a set of

parameters known as orbital elements. These elements were developed to describe

the motion of a particle subject to the two-body acceleration. They are therefore an

appropriate means to characterize a spacecraft in elliptical orbit about the Earth.

Each one of these elements has a specific physical interpretation. In brief:

• Two of these elements define the shape of the orbit. The semi-major axis a is

half the distance across the long axis of the elliptical orbit. The eccentricity e

is a unitless parameter that describes the ellipticity of the orbit, ranging from

nearly zero (nearly circular) to nearly one (highly elliptical).

• Two of the elements define the plane of the orbit with respect to a fundamental

plane. For Earth-orbiting satellites, this fundamental plane is the equatorial

plane (i.e., that plane which is perpendicular to the Earth’s spin axis). The

inclination i gives the angle between the orbital plane and the equatorial plane.

The right ascension of the ascending node Ω is an angle which defines the

location of the ascending node (i.e., the point where the sub-satellite point

crosses from the Southern to Northern Hemisphere) with respect to a standard

reference direction, the First Point of Aries1.

1The First Point of Aries is the intersection of the Earth equatorial plane and Earth orbital plane
around the Sun.
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• A fifth parameter, the argument of perigee ω, defines the orientation of the

orbit in its plane by specifying the angular location of the perigee with respect

to the ascending node.

• The final parameter is the true anomaly ν, an angle which defines the location

of the satellite with reference to the orbit perigee at the epoch of interest t0.

For further details on these elements, please consult Section 2.4.1 of Vallado [26].

A.2 Reference Frames

Throughout this study, we have discussed and developed vector formulae describing

the kinematics and kinetics of spacecraft navigation. For computational purposes,

these vectors must be expressed in a reference frame. Spacecraft dynamics com-

monly relies on two broad categories of reference frames: Earth-Centred Inertial

(ECI) frames and Earth-Centred Earth-Fixed (ECEF) frames.

An ECI frame is centred at the mass-centre of the Earth and is the standard

frame for all calculations related to the equations of motion. Its axes are defined

by two vectors: the x-axis points along the First Point of Aries while the z-axis is

aligned with the Earth’s rotation axis. Though this frame is defined by directions

fixed in inertial space, it is quasi-inertial as its origin is moving with a non-constant

velocity when referenced to the solar system barycentre (the nearest reasonable ap-

proximation to an inertially fixed point). However, for Earth-orbiting satellites, this

slight distinction is inconsequential and Newtonian mechanics can be applied in an

ECI frame as though it were truly inertial.

Like the ECI frame, an ECEF frame is also centred at the mass-centre of the

Earth and is the standard frame for any phenomena explicitly tied to the shape of

the Earth. Unlike the ECI frame, the ECEF axes are fixed to the figure of the Earth

itself: the x-axis nominally corresponds to the crossing of the Equator and Prime

Meridian (0�N, 0�E) while the z-axis nominally corresponds to the terrestrial North

Pole (90�N). In this study, an ECEF frame is used for one specific reason: calculation

of the geoidal acceleration (see Appendix B).

Since this study uses both ECI and ECEF frames, accurate conversion between

them is essential. Briefly, this conversion must account for:
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• precession and nutation of the Earth’s rotation axis due to the gravity of the

Sun and Moon pulling on our non-spherical Earth;

• the rotation of the Earth about its axis, repeating once every 24 h;

• the polar motion of the instantaneous Earth rotation axis when compared to

the terrestrial North Pole.

As an illustrative example of the the care that must be taken in this coordinate

transformation, the final effect (polar motion) is an arcsecond-level adjustment which

translates to a few metres of polar motion on the surface of the Earth. Yet, as

discussed by Montenbruck et al. [35] this effect is essential to any Kalman-based

navigation exercise to retain propagator accuracy – a conclusion that was re-affirmed

in the development of the propagator for this study.

As discussed above, ECI and ECEF are general categories of reference frames.

In this study, we used the J2000 frame of the 5th Fundamental Catalog (FK5) as

our ECI frame and the 1993 version of the International Terrestrial Reference Frame

(ITRF93) as our ECEF frame. Both are compatible with the JPL Development

Ephemeris described in the next section.

For further discussion on reference frames, please consult Section 3.7 of Vallado

[26].

A.2.1 The JPL Development Ephemeris

In support of ongoing spacecraft analyses, NASA’s Jet Propulsion Laboratory (JPL)

maintains a highly accurate ephemeris for our Solar System. This Developmental

Ephemeris (DE) is continuously improved as new measurements become available;

recent editions incorporate data from dozens of missions and measurement campaigns

over the past half-century [94]. Building off this proven track record, this study

employed the DE 421 ephemeris for solar system ancillary data.

To access the ephemeris, JPL provides the SPICE toolkit, a C-based interface

which is available in a MATLAB-compatible edition (MICE). By using the MICE

toolkit, our MATLAB-based navigation simulation can access:

• lunar and solar ephemerides, necessary for calculation of the third-body

acceleration (2.5) and the solar radiation pressure acceleration (2.8);
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• the ECI-ECEF frame rotation necessary to apply the geoidal acceleration

(see previous section);

• time conversions between UTC, GPS time, and the ephemeris time upon

which the ephemeris is defined.

All of these parameters are calculated from static datafiles distributed as a part of

the SPICE toolkit. These datafiles are accurate until the year 2050, well beyond

the expected lifetime of our spacecraft. Thus, this is an appropriate resource for our

navigation simulation.

A.3 Time Dilution of Precision

In Section 3.5.1, we noted that our receiver clock truth will only be steered when

the Time Dilution of Precision (TDOP) is below a threshold of 10. In the follow-

ing section, we will define TDOP and discuss the threshold chosen for our current

application.

As discussed by Langley [95], the relative geometry between receivers and trans-

mitters in a radionavigation system has a direct impact on the accuracy of the result-

ing point solution. The Geometric Dilution of Precision (GDOP) metric is a means

by which to quantify this effect. Roughly, GDOP is a unitless value which relates

input measurement uncertainty to point solution uncertainty:

GDOP � ppoint solution uncertaintyq
pmeasurement uncertaintyq (A.1)

Mathematically, the calculation of GDOP relies on an intermediate matrix A describ-

ing the current receiver-SV geometry:

A � coli

�
êTrsatÑSV piq

�1

�
(A.2)

where êrsatÑSV piq
is the unit vector from the receiver to each GPS SV for which the

receiver currently has lock. When at least four SVs are locked, the GDOP matrix D

can be calculated as:

D � pATAq�1 (A.3)
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Figure A.1: Time Dilution of Precision over a single Molniya orbit. The red dashed
line indicates the threshold TDOP � 10. Simulation begins at perigee.

where the values of interest are found along the main diagonal of D. Together, these

four values define the GDOP for a given receiver-SV geometry.

Because we are working with receiver clock bias, we are interested in the fourth

component of this diagonal. TDOP is therefore calculated as:

TDOP �
a
d44 (A.4)

where d44 is an element of the matrix D defined above.

A.3.1 TDOP for a Molniya orbit

The United States Coast Guard [92] notes that the dilution of precision will rise (i.e.,

the point solution accuracy degrades) when the line-of-sight unit vectors êrsatÑSV piq

are nearly aligned. As visualized in Figure 3.4, this near-alignment will occur when

our spacecraft is at apogee and receiving multiple signals from SVs on the far side of

the Earth. In an attempt to characterize the impact of the varying GPS geometry

on our navigation solution, we calculated TDOP over one Molniya orbit. The results

can be seen in Figure A.1.
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TDOP at perigee: From the figure, we note that at perigee the TDOP hovers

around unity. This is an expected result for a satellite with excellent GPS coverage

(cf. Figure 3.3). As the number of locked SVs falls, we see a corresponding rise in

TDOP, continuing until less than four satellites are locked. At this point, a calculation

of TDOP is meaningless (point solutions are not possible) and no further values are

produced until apogee.

TDOP at apogee: As confirmed by Figure 3.3, there is a brief period at apogee

where four SVs are locked by the receiver. All of these are located on the far side

of the Earth. As their line-of-sight unit vectors are nearly aligned, the TDOP at

this point is very high, indicating that metres of error in our pseudorange would

correspond to tens of kilometres of point solution error. This corresponds to tens of

microseconds of receiver clock error. As our receiver clock estimation algorithm has

a demonstrated accuracy in the hundreds of nanoseconds (cf. Section 5.3.2), it would

be detrimental to begin receiver clock steering using these point solutions.

A.3.2 Selecting a TDOP threshold

Drawing from the clock estimator performance in Figure 5.3 and the TDOP simulation

in Figure A.1, a TDOP threshold of 10 was chosen for our clock-steering algorithm.

This means that clock steering will only occur if the TDOP is less than 10, a threshold

indicated in Figure A.1 by a red dashed line.

Given that our pseudoranges are typically accurate to within ten metres, a TDOP

of 10 corresponds to clock accuracies in the hundreds of nanoseconds. As stated in the

previous section, this is approximately the threshold of our receiver clock estimation

algorithm. Thus, TDOP � 10 is an appropriate point at which to transition from a

steered to drifting receiver clock.



Appendix B

Recursive Algorithm for Earth Gravity

As introduced in Section 2.2.1, there exist recursive algorithms for the evaluation of

the acceleration predicted by a spherical harmonic model of the Earth’s gravitational

field. The algorithm implemented in this study is that given by Montenbruck and

Gill [96] (p. 66–68); it is reproduced here for completeness.

First, we define:

Vnm �
�
RC
r


n�1

� Pnmpsinφq � cospmλq (B.1a)

Wnm �
�
RC
r


n�1

� Pnmpsinφq � sinpmλq (B.1b)

allowing us to write the gravitational potential as

U � µC
RC

8̧

n�0

ņ

m�0

pCnmVnm � SnmWnmq . (B.2)

Using the definition in (B.1), Vnm and Wnm satisfy the following recurrence relations:

Vmm � p2m� 1q
"
xRC
r2

Vm�1,m�1 � yRC
r2

Wm�1,m�1

*
(B.3a)

Wmm � p2m� 1q
"
xRC
r2

Wm�1,m�1 � yRC
r2

Vm�1,m�1

*
(B.3b)

Vnm �
�

2n� 1

n�m



� zRC
r2

� Vn�1,m �
�
n�m� 1

n�m



� R

2
C

r2
� Vn�2,m (B.4a)
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Wnm �
�

2n� 1

n�m



� zRC
r2

�Wn�1,m �
�
n�m� 1

n�m



� R

2
C

r2
�Wn�2,m (B.4b)

with initial values

V00 � RC
r

, W00 � 0 . (B.5)

Thus, we can use (B.3), (B.4), and (B.5) to determine Vnm and Wnm to our desired

degree and order. The accelerations are then directly calculated as

:x �
¸
n,m

:xnm , :y �
¸
n,m

:ynm , :z �
¸
n,m

:znm (B.6)

where the partial accelerations are given by

:xnm
pm�0q� µC

R2
C

�
"
� Cn0Vn�1,1

*
(B.7a)

pm¡0q� µC
R2
C

� 1

2
�
"
p�CnmVn�1,m�1 � SnmWn�1,m�1q

� pn�m� 2q!
pn�mq! � p�CnmVn�1,m�1 � SnmWn�1,m�1q

* (B.7b)

:ynm
pm�0q� µC

R2
C

�
"
� Cn0Wn�1,1

*
(B.7c)

pm¡0q� µC
R2
C

� 1

2
�
"
p�CnmWn�1,m�1 � SnmVn�1,m�1q

� pn�m� 2q!
pn�mq! � p�CnmWn�1,m�1 � SnmVn�1,m�1q

* (B.7d)

:znm � µC
R2
C

�
"
pn�m� 1q � p�CnmVn�1,m � SnmWn�1,mq

*
. (B.7e)

Note that these accelerations are inertial but represented in an Earth-fixed reference

frame. For details on reference frame transformations, see Appendix A.2.



Appendix C

Simulation Details

As discussed in Section 1.4, this study documents a simulation-based analysis of

satellite navigation techniques. While the focus of this document has been the theory

and equations underlying the simulation, it is prudent to briefly outline the process

by which these equations were implemented.

The simulations outlined throughout this study involve three pieces of software:

• STK 9.0, an industry-standard environment for astrodynamic analyses;

• MATLAB R2010a, a mathematical software environment;

• Tapestry, purpose-built software for the LabPro-4000 GPS simulator.

Further details on Tapestry and MATLAB environment can be found in the remainder

of this Appendix.

C.1 Using the GPS simulator

Note: The following is a minimal set of instructions that assumes a user is familiar

with the operation of the LabPro-4000 GPS simulator. For further information, please

consult the simulator documentation, including GettingStarted.pdf.

1. Open up Tapestry (GPS simulator software) and Create A New Scenario with

1 vehicle and 2 antennae.

2. Import a trajectory per ImportTrajectoryFile.pdf with desired truth orbit

and attitude.
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3. Configure GPS antenna per UsingAntennaModels.pdf: gain pattern, boresight,

and lever arm. Note that gain patterns are actually attenuation patterns where

a value of 0.0 corresponds to the point of maximum gain.

4. Under SV MENU / ANTENNA PATTERN OPTIONS, toggle ENABLE UE

GAIN PATTERNS to the checked state.

5. Configure environmental models per RangeModels.pdf: troposphere (off), iono-

sphere (shell with default values), multipath (off), selective availability (off),

and user equivalent range error (off).

6. Under Utilities, open the configuration textfile tapcontrol.ini and find the

heading [GPSCONTROL]. Under this heading:

• Set SVReviewInternal=30; this controls the frequency with which the GPS

constellation is propagated (once every 30 seconds).

• Set SVMaskAngle=-90; this sets the GPS receiver mask to 90� below the

horizon, effectively permitting 4π SV visibility.

Both of these steps configure the simulator for spaceborne use.

7. Under SV MENU select OPEN SATPOWER PRO. Select GPS satellites 1–16

per EditingSATpowerPro.pdf.

8. Save scenario by clicking BUILD RF OUTPUT.

9. Re-open scenario and click Utilities / Dump Range Truth. Select All the Above

and save a file for RF#1 (first antenna) and RF#2 (second antenna). Select

ECEF Satellite State Vector and save a single file. For further details, consult

DumpRange.pdf.

10. Repeat previous three steps for GPS satellites 17–32.

These steps will provide the information detailed in Section 3.6.1. The user must then

calculate the SV antenna gain (a function of geometry) and check for Earth-blockage

before a link budget can be calculated to check whether a given SV is visible to the

receiver.
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C.2 The MATLAB simulation environment

The MATLAB-based navigation simulation requires a number of ancillary files:

• measurement data products from the GPS Simulator (see Section 3.6.1);

• ancillary astrodynamical information from the JPL Developmental Ephemeris

(see Appendix A.2), including solar/lunar ephemerides and coordinate frame

transformations;

• the definition of the GPS SV antenna1;

• datafiles defining the original truth orbit from STK, the EGM-96 coefficients,

and the errors in the broadcast GPS navigation message as listed in Appendix E.

These files are saved as text files in a directory known to the simulation and are

loaded into the simulation using MATLAB’s textread function.

Form of the numerical propagator: In Section 2.1.1, we noted that our study

employs a numerical propagator for integration of the equations of motion. During the

development of this navigation solution, two numerical propagators were considered:

• an explicit fourth-order Runge-Kutta method using the standard equations (see,

e.g., Butcher [97]);

• a built-in MATLAB function (ode45) realizing a Runge-Kutta style algorithm

developed by Dormand and Prince [98]. It is accurate to the fourth-order with

fifth-order evaluations used for error-checking.

The Runge-Kutta framework is appropriate as it has been used in on-orbit filtering

applications; these applications include the DIODE algorithm (processing DORIS

measurements) and the DIOGENE algorithm (processing GPS measurements) [91].

In our application, we found that ode45 matched the accuracy of the explicit fourth

order method at a fraction of the computational cost. Thus, ode45 was the integrator

of choice.

1Ideally, this information would be included in the GPS simulator data products, but a bug in
the simulator necessitated post-simulation application of the SV antenna pattern.



Appendix D

Solar Radiation Pressure: Derivation and

Justification

Solar Radiation Pressure at 1 AU. The Sun constantly emits electromagnetic

energy. At a distance of 1 AU from the Sun, the flux of this solar energy has an

accepted value of Φp1 AUq � 1367 J�m�2�s�1 ([26], p. 575).

We recall that using the mass-energy equivalence E � mc2, we can define the

momentum of electromagnetic energy as p � mc � E
c
. Using this momentum-energy

equivalence, we can use the solar energy flux Φ to define a solar momentum flux Π:

Πp1 AUq � Φp1 AUq
c

� 1367 J�m�2�s�1

3 � 108 m�s�1 � 4.57 � 10�6 kg�m�s�1

m2�s . (D.1)

This momentum flux (momentum transferred per unit time and area) can be equiv-

alently viewed as a force per unit area, a “solar radiation pressure” exerted by the

incident solar energy:

pSRp1 AUq � 4.57 � 10�6 N�m�2. (D.2)

For further details, please consult Vallado [26] and Ruiz Delgado [99].

Variation with sun-satellite distance. In the above, we derived the solar radia-

tion pressure at a nominal distance of 1 AU. Both Φ and pSR obey an inverse square

law with respect to distance from the Sun. Thus, to obtain pSR at any sun-satellite

distance rsatÑ@, we solve:

pSRprsatÑ@q � pSRp1 AUq �
�

1 AU

rsatÑ@


2

. (D.3)
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Variation with solar cycle. Lee et al. [100] found that over Solar Cycle 22, the

solar flux at 1 AU varied by at most 1.4 J�m�2�s�1, approximately 0.1% of the total

value. This inaccuracy is negligible when compared to the accuracy of our propagator

(see Table 2.6) and can therefore be safely ignored.



Appendix E

GPS Broadcast Errors

The following tables contain the results of an analysis performed by Dr. Anton

de Ruiter of Ryerson University. The analysis examined the accuracy of the SV

ephemerides and SV clock-corrections broadcast by the GPS constellation. This ac-

curacy can determined by comparing the broadcast values with highly precise values

determined through post-processing. The resultant differences have been used in this

thesis to represent typical errors in the broadcast ephemerides and clock-corrections.

For further details, including an explanation of the values in the tables, please see

the discussions in Section 3.4.3 and Section 3.4.4.

Raw data for the analysis was made available by Dr. Richard Langley at the Univer-

sity of New Brunswick.
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Table E.1: SV ephemeris errors (RMS) for the day of 04 Feb 2007.

PRN ∆x, m ∆y, m ∆z, m

1 -3.414 1.570 2.218
2 -1.447 1.095 1.109
3 2.663 2.442 -2.699
4 -1.505 -1.313 1.669

5 5.994 5.248 5.258
6 2.318 -1.979 -2.011
7 1.500 1.316 -1.356
8 -1.446 -0.846 -1.144

9 -2.187 1.403 2.036
10 5.062 4.536 -5.683
11 -1.842 -1.259 -1.223
12 -1.863 1.302 1.001

13 -1.457 1.728 1.974
14 -1.369 -1.006 1.490
15* 5.609 -3.541 4.343
16 -1.549 -1.164 0.885

PRN ∆x, m ∆y, m ∆z, m

17 2.254 1.391 2.015
18 1.347 0.899 1.065
19 1.279 1.476 1.851
20 0.882 -1.168 -1.092

21 1.969 -1.578 -2.136
22 -1.162 1.218 1.427
23 -2.079 11.013 -20.265
24 0.783 -1.139 1.210

25 1.062 -0.870 -1.525
26 1.285 1.790 -1.095
27 4.807 -3.750 -2.726
28 -1.577 1.235 -1.213

29 -5.956 -8.131 -6.041
30 -5.014 -5.293 4.737
31 -1.477 1.288 -1.127
32* -3.827 2.959 -0.474

*data simulated based on mean and standard deviation of remaining data points.
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Table E.2: SV clock-correction errors (RMS) for the day of 04 Feb 2007.

PRN ∆af0, s ∆af1, s�s�1 ∆af2, s�s�2

1 3.76 � 10�9 �1.60 � 10�12 2.31 � 10�17

2 7.28 � 10�10 �1.76 � 10�13 1.11 � 10�17

3 8.09 � 10�9 �7.61 � 10�13 9.15 � 10�17

4 �3.64 � 10�9 �2.85 � 10�13 3.31 � 10�17

5 �9.63 � 10�10 �1.39 � 10�13 1.41 � 10�17

6 �4.79 � 10�9 �4.13 � 10�14 �2.17 � 10�18

7 �2.52 � 10�9 1.87 � 10�13 �3.06 � 10�17

8 �1.09 � 10�9 �2.21 � 10�13 1.98 � 10�17

9 �5.21 � 10�10 2.22 � 10�14 2.73 � 10�17

10 �2.96 � 10�9 2.25 � 10�13 1.03 � 10�17

11 1.02 � 10�8 �3.93 � 10�14 1.11 � 10�17

12 2.45 � 10�9 1.27 � 10�13 �8.72 � 10�18

13 6.90 � 10�9 �3.51 � 10�14 9.48 � 10�19

14 6.60 � 10�9 �5.60 � 10�14 �5.97 � 10�18

15 �2.80 � 10�9 �1.02 � 10�13 1.36 � 10�17

16 5.29 � 10�9 1.98 � 10�13 �1.98 � 10�17

17 1.68 � 10�9 1.13 � 10�13 �1.43 � 10�17

18 4.92 � 10�9 9.28 � 10�15 1.20 � 10�18

19 1.58 � 10�9 �8.06 � 10�14 8.11 � 10�18

20 5.77 � 10�9 1.24 � 10�13 �8.25 � 10�18

21 4.99 � 10�9 2.20 � 10�13 �1.80 � 10�17

22 �2.13 � 10�10 �1.80 � 10�13 1.35 � 10�17

23 1.54 � 10�9 �7.61 � 10�15 �7.72 � 10�18

24 �1.09 � 10�8 5.99 � 10�13 �3.07 � 10�17

25 �1.77 � 10�9 �3.46 � 10�13 3.32 � 10�17

26 �1.10 � 10�9 1.80 � 10�13 1.12 � 10�17

27 1.58 � 10�9 3.87 � 10�13 �7.90 � 10�18

28 1.34 � 10�8 2.64 � 10�13 �1.77 � 10�17

29 �3.97 � 10�9 �1.17 � 10�13 1.59 � 10�17

30 2.85 � 10�10 1.98 � 10�13 �1.32 � 10�16

31 �9.57 � 10�11 �3.66 � 10�14 �2.43 � 10�18

32* �5.32 � 10�11 �1.49 � 10�13 4.60 � 10�17

*data simulated based on mean and standard deviation of remaining data points.
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